kooldark commited on
Commit
94aa028
·
verified ·
1 Parent(s): 6251e1e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -151
app.py CHANGED
@@ -1,154 +1,63 @@
 
 
1
  import gradio as gr
2
- import numpy as np
 
 
 
3
  import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import os
2
+ import requests
3
  import gradio as gr
4
+ from dotenv import load_dotenv
5
+ import io
6
+ from PIL import Image
7
+ from mtranslate import translate
8
  import random
9
 
10
+ # Tải biến môi trường từ file .env
11
+ load_dotenv()
12
+
13
+ # Lấy API Key và URL từ biến môi trường
14
+ api_key = os.getenv("HF_API_KEY")
15
+ image_api_url = os.getenv("IMAGE_API_URL")
16
+ headers = {"Authorization": f"Bearer {api_key}"}
17
+
18
+ # Hàm gọi API Hugging Face để tạo hình ảnh
19
+ def query(payload):
20
+ response = requests.post(image_api_url, headers=headers, json=payload)
21
+ return response.content
22
+
23
+ # Hàm dịch tiếng Việt sang tiếng Anh
24
+ def translate_to_english(text):
25
+ return translate(text, "en", "vi") # Dịch từ tiếng Việt sang tiếng Anh
26
+
27
+ # Hàm xử lý tạo hình ảnh với các lựa chọn
28
+ def generate_image(prompt, view, style, hair_color, eye_color, lip_color):
29
+ # Dịch prompt từ tiếng Việt sang tiếng Anh
30
+ prompt_en = translate_to_english(prompt)
31
+
32
+ # Thêm các yếu tố lựa chọn vào prompt
33
+ prompt_with_choices = f"{prompt_en}, View: {view}, Style: {style}, Hair color: {hair_color}, Eye color: {eye_color}, Lip color: {lip_color}"
34
+
35
+ # Thêm yếu tố ngẫu nhiên vào prompt
36
+ random_factor = random.randint(1, 1000)
37
+ prompt_with_randomness = f"{prompt_with_choices}. Seed: {random_factor}"
38
+
39
+ # Gửi prompt vào API tạo hình ảnh
40
+ image_bytes = query({"inputs": prompt_with_randomness})
41
+
42
+ # Mở hình ảnh từ byte dữ liệu
43
+ image = Image.open(io.BytesIO(image_bytes))
44
+ return image
45
+
46
+ # Tạo giao diện Gradio
47
+ iface = gr.Interface(
48
+ fn=generate_image,
49
+ inputs=[
50
+ "text", # Prompt
51
+ gr.Dropdown(["Cận cảnh", "Nửa người", "Toàn thân"], label="View"),
52
+ gr.Dropdown(["Art", "Anime", "Realistic"], label="Style"),
53
+ gr.ColorPicker(label="Màu tóc"),
54
+ gr.ColorPicker(label="Màu mắt"),
55
+ gr.ColorPicker(label="Màu môi")
56
+ ],
57
+ outputs="image",
58
+ title="Image Generator - Trần Như Tuấn",
59
+ description="Chọn các tùy chọn và nhập mô tả để tạo hình ảnh chân dung"
60
+ )
61
+
62
+ # Khởi chạy ứng dụng
63
+ iface.launch()