Spaces:
Sleeping
Sleeping
Create function.py
Browse files- function.py +181 -0
function.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import yfinance as yf
|
| 4 |
+
from datetime import timedelta,datetime
|
| 5 |
+
import pytz
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import numpy as np
|
| 9 |
+
from IPython.display import display
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def dateoffset(input_date_str):
|
| 14 |
+
|
| 15 |
+
input_date_dt = datetime.strptime(input_date_str, "%Y-%m-%d")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
new_date_dt = input_date_dt - timedelta(days=1)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
new_date_str = new_date_dt.strftime("%Y-%m-%d")
|
| 22 |
+
|
| 23 |
+
return new_date_str
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def setdates(startdate, enddate):
|
| 27 |
+
while startdate not in nifty50["nifty50"].data.index:
|
| 28 |
+
startdate = dateoffset(startdate)
|
| 29 |
+
|
| 30 |
+
while enddate not in nifty50["nifty50"].data.index:
|
| 31 |
+
enddate = dateoffset(enddate)
|
| 32 |
+
|
| 33 |
+
return startdate, enddate
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def organisedata(startdate, enddate):
|
| 37 |
+
|
| 38 |
+
startdate, enddate = setdates(startdate, enddate)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
symbols = list(nifty_stocks.keys())
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
common_index = nifty50["nifty50"].data.loc[startdate:enddate].index
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
data_frame = pd.DataFrame(index=symbols, columns=common_index)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
for symbol, stock_object in nifty_stocks.items():
|
| 51 |
+
stock_data = stock_object.data.loc[startdate:enddate, 'Close']
|
| 52 |
+
data_frame.loc[symbol] = stock_data.reindex(common_index).values
|
| 53 |
+
|
| 54 |
+
return data_frame
|
| 55 |
+
|
| 56 |
+
def previoustimeframedata(n, startdate):
|
| 57 |
+
|
| 58 |
+
startdate_dt = pd.to_datetime(startdate)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
ndaysagodate = startdate_dt - timedelta(days=int(n))
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
ndaysagodate_str = ndaysagodate.strftime("%Y-%m-%d")
|
| 65 |
+
startdate_str = startdate_dt.strftime("%Y-%m-%d")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
return organisedata(ndaysagodate_str, startdate_str)
|
| 69 |
+
|
| 70 |
+
def portfoliooperations(equity,startdate,ndaywindow,portfolio):
|
| 71 |
+
|
| 72 |
+
startdate_dt = pd.to_datetime(startdate)
|
| 73 |
+
windowenddate = startdate_dt + timedelta(days=int(ndaywindow))
|
| 74 |
+
windowenddate_str = windowenddate.strftime("%Y-%m-%d")
|
| 75 |
+
|
| 76 |
+
startdate,windowenddate = setdates(startdate,windowenddate_str)
|
| 77 |
+
|
| 78 |
+
window_data = organisedata(startdate,windowenddate)
|
| 79 |
+
|
| 80 |
+
differences = window_data.iloc[:, -1] - window_data.iloc[:, 0]
|
| 81 |
+
|
| 82 |
+
next_portfolio = differences[differences > 0].index.tolist()
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
portfolio_sum = window_data.loc[portfolio, window_data.columns[0]].sum()
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
multiplier = equity / portfolio_sum if portfolio_sum != 0 else 0
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
portfolio_value = pd.DataFrame(index=window_data.columns, columns=['value'])
|
| 92 |
+
|
| 93 |
+
for date in window_data.columns:
|
| 94 |
+
|
| 95 |
+
portfolio_sum = window_data.loc[portfolio, date].sum()
|
| 96 |
+
|
| 97 |
+
portfolio_value.loc[date, 'value'] = portfolio_sum * multiplier
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
return next_portfolio,portfolio_value
|
| 101 |
+
|
| 102 |
+
def mainfunction (equity,startdate,enddate,ndaywindow):
|
| 103 |
+
|
| 104 |
+
pastwindow = previoustimeframedata(n=ndaywindow,startdate=startdate) # No Errors untill here
|
| 105 |
+
|
| 106 |
+
differences = pastwindow.iloc[:, -1] - pastwindow.iloc[:, 0]
|
| 107 |
+
|
| 108 |
+
portfolio = differences[differences > 0].index.tolist() # No Errors untill here
|
| 109 |
+
|
| 110 |
+
portfolio,portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
enddate_tz = datetime.strptime(enddate,"%Y-%m-%d").replace(tzinfo=pytz.timezone('Asia/Kolkata'))
|
| 115 |
+
|
| 116 |
+
while portfolio_value.index[-1] < pd.to_datetime(enddate_tz) - timedelta(days=int(ndaywindow)):
|
| 117 |
+
|
| 118 |
+
portfolio,new_portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)
|
| 119 |
+
|
| 120 |
+
portfolio_value = pd.concat([portfolio_value, new_portfolio_value])
|
| 121 |
+
|
| 122 |
+
startdate = (pd.to_datetime(startdate)+ timedelta(days=int(ndaywindow))).strftime("%Y-%m-%d")
|
| 123 |
+
|
| 124 |
+
equity = portfolio_value.iloc[-1, 0]
|
| 125 |
+
|
| 126 |
+
return portfolio_value
|
| 127 |
+
|
| 128 |
+
def calculate_cagr(series):
|
| 129 |
+
total_return = (series.iloc[-1] / series.iloc[0]) - 1
|
| 130 |
+
num_years = len(series) / 252
|
| 131 |
+
cagr = (1 + total_return) ** (1 / num_years) - 1
|
| 132 |
+
return cagr * 100
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def calculate_volatility(series):
|
| 136 |
+
return series.pct_change().std() * np.sqrt(252) * 100
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def calculate_sharpe_ratio(series, risk_free_rate=0):
|
| 140 |
+
cagr = calculate_cagr(series)
|
| 141 |
+
volatility = calculate_volatility(series)
|
| 142 |
+
sharpe_ratio = (cagr - risk_free_rate) / volatility
|
| 143 |
+
return sharpe_ratio
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def final_function(equity,startdate,enddate,ndaywindow):
|
| 147 |
+
|
| 148 |
+
equity = int(equity)
|
| 149 |
+
ndaywindow = int(ndaywindow)
|
| 150 |
+
|
| 151 |
+
portfolio_value = mainfunction(equity=equity,startdate=startdate,enddate=enddate,ndaywindow=ndaywindow)
|
| 152 |
+
nifty_data = nifty50["nifty50"].data
|
| 153 |
+
subset_data = nifty_data[startdate:enddate]
|
| 154 |
+
initial_nifty = subset_data['Close'][0]
|
| 155 |
+
nifty_dataseries = (equity/initial_nifty)*subset_data['Close']
|
| 156 |
+
plt.figure(figsize=(10, 6))
|
| 157 |
+
plt.plot(portfolio_value['value'], label='Strategy')
|
| 158 |
+
plt.plot(nifty_dataseries, label='Nifty50 as Benchmark')
|
| 159 |
+
plt.title('Benchmark vs Strategy')
|
| 160 |
+
plt.xlabel('Date')
|
| 161 |
+
plt.ylabel('Close Price')
|
| 162 |
+
plt.legend()
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
image_path = "output_plot.png"
|
| 166 |
+
plt.savefig(image_path)
|
| 167 |
+
plt.close()
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
image = Image.open(image_path)
|
| 171 |
+
|
| 172 |
+
strategy_cagr = calculate_cagr(portfolio_value['value'])
|
| 173 |
+
strategy_volatility = calculate_volatility(portfolio_value['value'])
|
| 174 |
+
strategy_sharpe_ratio = calculate_sharpe_ratio(portfolio_value['value'])
|
| 175 |
+
|
| 176 |
+
benchmark_cagr = calculate_cagr(nifty_dataseries)
|
| 177 |
+
benchmark_volatility = calculate_volatility(nifty_dataseries)
|
| 178 |
+
benchmark_sharpe_ratio = calculate_sharpe_ratio(nifty_dataseries)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
return image, strategy_cagr, strategy_volatility, strategy_sharpe_ratio, benchmark_cagr, benchmark_volatility, benchmark_sharpe_ratio
|