File size: 3,423 Bytes
c51ea2c 606152f c51ea2c 606152f c51ea2c 606152f c51ea2c 606152f c51ea2c 5207054 a984016 5207054 c51ea2c a984016 3d5f5df a984016 c51ea2c bc6475a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
import torch
import torchaudio
from transformers import AutoProcessor, SeamlessM4TModel
processor = AutoProcessor.from_pretrained("facebook/hf-seamless-m4t-medium")
model = SeamlessM4TModel.from_pretrained("facebook/hf-seamless-m4t-medium")
# model.to('cuda')
language_dict = {
"Modern Standard Arabic" : "arb",
"Bengali" : "ben",
"Catalan" : "cat",
"Czech" : "ces",
"Mandarin Chinese" : "cmn",
"Welsh" : "cym",
"Danish" : "dan",
"German" : "deu",
"English" : "eng",
"Estonian" : "est",
"Finnish" : "fin",
"French" : "fra",
"Hindi" : "hin",
"Indonesian" : "ind",
"Italian" : "ita",
"Japanese" : "jpn",
"Korean" : "kor",
"Maltese" : "mlt",
"Dutch" : "nld",
"Western Persian" : "pes",
"Polish" : "pol",
"Portuguese" : "por",
"Romanian" : "ron",
"Russian" : "rus",
"Slovak" : "slk",
"Spanish" : "spa",
"Swedish" : "swe",
"Swahili" : "swh",
"Telugu" : "tel",
"Tagalog" : "tgl",
"Thai" : "tha",
"Turkish" : "tur",
"Ukrainian" : "ukr",
"Urdu" : "urd",
"Northern Uzbek" : "uzn",
"Vietnamese" : "vie"
}
languages = list(language_dict.keys())
def png(source_lang,target_lang,audio,text):
source_lang_code = language_dict[source_lang]
target_lang_code = language_dict[target_lang]
if audio == None:
processed_inputs = processor(text, src_lang=source_lang_code, return_tensors="pt")
else:
sample_rate, audio_data = audio
audio_tokens = torch.from_numpy(audio_data) #.to(torch.device("cuda"))
audio_tokens = audio_tokens.to(torch.float32)
audio_tokens = torchaudio.functional.resample(audio_tokens, orig_freq=sample_rate, new_freq=16_000)
# audio_tokens = audio_tokens.cpu()
processed_inputs = processor(audios=audio_tokens, sampling_rate=16000, return_tensors="pt")
# processed_inputs = processed_inputs.to("cuda")
generated_audio = model.generate(**processed_inputs, tgt_lang=target_lang_code)[0].cpu().numpy().squeeze()
output_tokens = model.generate(**processed_inputs, tgt_lang=target_lang_code, generate_speech=False)
generated_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
return (16000,generated_audio),generated_text
title = "36 Language Translator"
description = """
This Demo can translate either Speech or Text form any of the selected SOURCE language amoung 36 languages to both Speech and Text in any of the selected TARGET language.
This Demo is powered by "facebook/hf-seamless-m4t-medium" model. Thanks for checking out.
Select source and target languages for translation.
"""
iface = gr.Interface(
png,
inputs=[
gr.Dropdown(languages, label="Source Language"),
gr.Dropdown(languages, label="Target Language"),
gr.Audio(),
gr.Textbox(label="Enter Text in Source Language")
],
outputs=[
gr.Audio(label = "Translated Audio"),
gr.Textbox(label="Translated Text")
],
title="Language Translation App",
description = """
This Demo can translate either Speech or Text form any of the selected SOURCE language amoung 36 languages to both Speech and Text in any of the selected TARGET language.
This Demo is powered by "facebook/hf-seamless-m4t-medium" model. This Demo can take 3-4 mins as it is running on a CPU.\n Try this Google Colab Notebook with GPU for faster processing.
\n Thanks for checking out.
Select source and target languages for translation.
""",
)
if __name__ == "__main__":
iface.launch()
|