File size: 5,064 Bytes
f1fef64
381d2e1
317e409
9122113
 
 
381d2e1
 
 
 
 
 
 
317e409
9122113
 
 
 
539566d
f70fc29
 
 
 
317e409
f70fc29
381d2e1
 
 
 
 
 
f70fc29
381d2e1
 
 
9122113
 
 
 
 
 
 
 
 
317e409
381d2e1
 
 
 
 
9122113
381d2e1
 
 
f70fc29
 
c2dfdca
f70fc29
 
 
 
c2dfdca
f70fc29
 
 
 
 
 
c2dfdca
f70fc29
 
 
 
 
c2dfdca
 
 
381d2e1
f70fc29
 
 
c2dfdca
a26f5ee
f70fc29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2dfdca
f70fc29
 
 
 
c2dfdca
317e409
 
f70fc29
f1fef64
2b3ca21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import subprocess

# Function to load a model using Hugging Face Spaces
def load_model_from_space(model_name):
    print(f"Attempting to load {model_name}...")
    try:
        demo = gr.load(name=model_name, src="spaces")
        print(f"Successfully loaded {model_name}")
        return demo
    except Exception as e:
        print(f"Error loading model {model_name}: {e}")
        return None

# Load the models
deepseek_r1_distill = load_model_from_space("deepseek-ai/DeepSeek-R1-Distill-Qwen-32B")
deepseek_r1 = load_model_from_space("deepseek-ai/DeepSeek-R1")
deepseek_r1_zero = load_model_from_space("deepseek-ai/DeepSeek-R1-Zero")

# --- Chatbot function ---
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p):
    history = history or []
    print(f"Input: {input_text}, History: {history}, Model: {model_choice}")

    # Choose the model based on user selection
    if model_choice == "DeepSeek-R1-Distill-Qwen-32B" and deepseek_r1_distill:
        model_demo = deepseek_r1_distill
    elif model_choice == "DeepSeek-R1" and deepseek_r1:
        model_demo = deepseek_r1
    elif model_choice == "DeepSeek-R1-Zero" and deepseek_r1_zero:
        model_demo = deepseek_r1_zero
    else:
        default_response = "Model not selected or could not be loaded."
        history.append((input_text, default_response))
        return history, history, "", model_choice, system_message, max_new_tokens, temperature, top_p

    # Call the model's 'predict' function.
    try:
      model_output = model_demo(input_text, history, max_new_tokens, temperature, top_p, system_message, fn_index=0)
    except Exception as e:
      print(f"An error occurred: {e}")
      model_output= "An error occurred please check the model and try again."
      history.append((input_text, model_output))
      return history, history, "", model_choice, system_message, max_new_tokens, temperature, top_p

    # Check if model_output is iterable and has expected number of elements
    if not isinstance(model_output, (list, tuple)) or len(model_output) < 2:
        error_message = "Model output does not have the expected format."
        history.append((input_text, error_message))
        return history, history, "", model_choice, system_message, max_new_tokens, temperature, top_p

    response = model_output[-1][1] if model_output[-1][1] else "Model did not return a response."
    history.append((input_text, response))
    return history, history, "", model_choice, system_message, max_new_tokens, temperature, top_p

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # DeepSeek Chatbot
        Created by [ruslanmv.com](https://ruslanmv.com/)

        This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit".
        You can also adjust optional parameters like system message, max new tokens, temperature, and top-p.
        """
    )

    with gr.Row():
        with gr.Column():
            chatbot_output = gr.Chatbot(label="DeepSeek Chatbot", height=500)
            msg = gr.Textbox(label="Your Message", placeholder="Type your message here...")
            with gr.Row():
                submit_btn = gr.Button("Submit", variant="primary")
                clear_btn = gr.ClearButton([msg, chatbot_output])

    # Options moved below the chat interface
    with gr.Row():
        with gr.Accordion("Options", open=True):
            model_choice = gr.Radio(
                choices=["DeepSeek-R1-Distill-Qwen-32B", "DeepSeek-R1", "DeepSeek-R1-Zero"],
                label="Choose a Model",
                value="DeepSeek-R1"
            )
            with gr.Accordion("Optional Parameters", open=False):
                system_message = gr.Textbox(
                    label="System Message",
                    value="You are a friendly Chatbot created by ruslanmv.com",
                    lines=2,
                )
                max_new_tokens = gr.Slider(
                    minimum=1, maximum=4000, value=200, label="Max New Tokens"
                )
                temperature = gr.Slider(
                    minimum=0.10, maximum=4.00, value=0.70, label="Temperature"
                )
                top_p = gr.Slider(
                    minimum=0.10, maximum=1.00, value=0.90, label="Top-p (nucleus sampling)"
                )

    # Maintain chat history
    chat_history = gr.State([])

    # Event handling
    submit_btn.click(
        chatbot,
        [msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p],
        [chatbot_output, chat_history, msg, model_choice, system_message, max_new_tokens, temperature, top_p],
    )
    msg.submit(
        chatbot,
        [msg, chat_history, model_choice, system_message, max_new_tokens, temperature, top_p],
        [chatbot_output, chat_history, msg, model_choice, system_message, max_new_tokens, temperature, top_p],
    )

# Launch the demo
if __name__ == "__main__":
    demo.launch()