Spaces:
Configuration error
Configuration error
| import torch | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer | |
| from datasets import load_dataset, load_metric | |
| # Load dataset | |
| dataset = load_dataset("conll2003") | |
| # Load tokenizer | |
| model_checkpoint = "dbmdz/bert-large-cased-finetuned-conll03-english" | |
| tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
| # Tokenize the dataset | |
| def tokenize_and_align_labels(examples): | |
| tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) | |
| return tokenized_inputs | |
| tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=True) | |
| # Load model | |
| model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=9) | |
| # Training arguments | |
| training_args = TrainingArguments( | |
| output_dir="./ner_model", | |
| evaluation_strategy="epoch", | |
| save_strategy="epoch", | |
| learning_rate=2e-5, | |
| per_device_train_batch_size=16, | |
| per_device_eval_batch_size=16, | |
| num_train_epochs=3, | |
| weight_decay=0.01, | |
| ) | |
| # Load metric | |
| metric = load_metric("seqeval") | |
| def compute_metrics(eval_pred): | |
| predictions, labels = eval_pred | |
| return metric.compute(predictions=predictions.argmax(-1), references=labels) | |
| # Trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_datasets["train"], | |
| eval_dataset=tokenized_datasets["validation"], | |
| tokenizer=tokenizer, | |
| compute_metrics=compute_metrics, | |
| ) | |
| # Train model | |
| trainer.train() | |
| # Save model | |
| trainer.save_model("./ner_model") | |
| tokenizer.save_pretrained("./ner_model") |