File size: 4,127 Bytes
030905d
 
94dfd3b
030905d
 
 
 
 
94dfd3b
030905d
27a4e05
030905d
 
aa18d80
030905d
 
 
aa18d80
030905d
aa18d80
030905d
 
94dfd3b
030905d
 
 
 
 
 
 
 
 
 
 
94dfd3b
 
030905d
 
 
 
 
 
94dfd3b
030905d
 
 
 
8225915
030905d
 
 
94dfd3b
030905d
 
 
3b85106
030905d
 
94dfd3b
030905d
 
 
 
 
 
 
 
 
bfce6e0
030905d
 
 
 
94dfd3b
030905d
 
 
 
94dfd3b
 
 
030905d
94dfd3b
030905d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8225915
 
 
 
030905d
 
 
94dfd3b
 
 
030905d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "kodetr/stunting-qa-v3"
MODELS = os.environ.get("MODELS")

TITLE = "<h1><center>STUNTING Q&A</center></h1>"

DESCRIPTION = f"""
<center>
<p>Konsultasi stunting pada anak
<br>
Developed By Tanwir
</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

model = AutoModelForCausalLM.from_pretrained(
          MODEL_ID,
          torch_dtype=torch.bfloat16,
          device_map="auto",
        )
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = [{"role": "system", "content": 'Di bawah ini adalah instruksi yang menjelaskan suatu tugas. Tulis respons yang menyelesaikan permintaan dengan tepat.'}]
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})

    print(f"Conversation is -\n{conversation}")
    
    input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(input_ids, return_tensors="pt").to("cpu") #GPU 0, CPU 1
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        inputs, 
        streamer=streamer,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=penalty,
        max_new_tokens=max_new_tokens, 
        do_sample=True, 
        temperature=temperature,
        eos_token_id=128001
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer



chatbot = gr.Chatbot(height=600)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Stunting"],
            ["Apa saja tanda-tanda anak mengalami stunting?"],
            ["Apa saja makanan yang bisa mencegah stunting?"],
            ["Bagaimana malnutrisi dapat mempengaruhi perkembangan otak anak?"],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()