File size: 6,268 Bytes
030905d
 
94dfd3b
030905d
 
 
 
39fb517
030905d
94dfd3b
030905d
3571b0e
030905d
 
5154cbe
030905d
 
 
5154cbe
aa18d80
030905d
 
94dfd3b
030905d
 
 
 
 
 
 
 
 
 
 
94dfd3b
 
93403ab
 
 
 
1327db3
 
 
 
 
 
 
93403ab
 
 
 
1327db3
 
 
 
 
 
94dfd3b
030905d
 
 
 
154df4e
030905d
 
 
94dfd3b
030905d
 
93403ab
 
 
9e26a79
 
1327db3
 
 
 
 
 
 
 
 
 
93403ab
1327db3
 
 
 
030905d
3571b0e
1327db3
 
 
 
 
 
 
 
 
 
94dfd3b
9e26a79
1327db3
 
9e26a79
1327db3
 
 
 
93403ab
 
 
 
3571b0e
1327db3
 
3571b0e
1327db3
3571b0e
1327db3
 
 
 
 
 
 
 
 
 
 
 
3571b0e
1327db3
 
3571b0e
1327db3
 
 
 
3571b0e
94dfd3b
 
030905d
94dfd3b
030905d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a21c5a0
8225915
 
 
030905d
 
 
94dfd3b
 
 
030905d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
from transformers import pipeline


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "kodetr/stunting-qa-v5"
MODELS = os.environ.get("MODELS")

TITLE = "<h1><center>KONSULTASI STUNTING</center></h1>"

DESCRIPTION = f"""
<center>
<p>
Developed By Tanwir
</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

# -------------------------------------
# ------- use model stunting V5 -------
# -------------------------------------

# text_pipeline = pipeline(
#     "text-generation",
#     model=MODEL_ID,
#     model_kwargs={"torch_dtype": torch.bfloat16},
#     device_map="auto",
# )

# -------------------------------------
# ------- use model stunting V6 -------
# -------------------------------------

model = AutoModelForCausalLM.from_pretrained(
          MODEL_ID,
          torch_dtype=torch.bfloat16,
          device_map="auto",
        )
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = [{"role": "system", "content": 'Anda adalah chatbot kesehatan masyarakat yang hanya memberikan informasi dan konsultasi terkait pencegahan stunting, gizi anak, dan kesehatan ibu. Tolak semua pertanyaan yang tidak relevan atau di luar konteks ini dengan sopan.'}]
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})

    print(f"Conversation is -\n{conversation}")
    
# -------------------------------------
# ------- use model stunting V5 -------
# -------------------------------------

    # Ubah ke format prompt-style string
    # conversation_text = ""
    # for turn in conversation:
    #     role = turn["role"]
    #     content = turn["content"]
    #     if role == "system":
    #         conversation_text += f"[SYSTEM]: {content}\n"
    #     elif role == "user":
    #         conversation_text += f"[USER]: {content}\n"
    #     elif role == "assistant":
    #         conversation_text += f"[ASSISTANT]: {content}\n"
    
    # terminators = [
    #     text_pipeline.tokenizer.eos_token_id,
    #     text_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
    # ]
    
    # Hasil dari pipeline akan berupa list dengan dictionary berisi text
    # outputs = text_pipeline(
    #     conversation_text,
    #     max_new_tokens=max_new_tokens,
    #     eos_token_id=terminators,
    #     do_sample=True,
    #     temperature=temperature,
    #     top_p=top_p,
    #     top_k=top_k,
    #     repetition_penalty=penalty
    # )

    # 4. Ekstrak teks hasil dan stream per kalimat
    # generated_text = outputs[0].get("generated_text", "")
    # streamed_text = generated_text[len(conversation_text):].strip()  # Hilangkan prompt awal

    # buffer = ""
    # for part in streamed_text.split(". "):
    #     buffer += part.strip() + ". "
    #     yield buffer
        
# -------------------------------------
# ------- use model stunting V6 -------
# -------------------------------------
    
    input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(input_ids, return_tensors="pt").to(0) #gpu 0, cpu 1
    
    streamer = TextIteratorStreamer(tokenizer, timeout=60., skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        inputs, 
        streamer=streamer,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=penalty,
        max_new_tokens=max_new_tokens, 
        do_sample=True, 
        temperature=temperature,
        pad_token_id=128000,
        eos_token_id=[128001,128008,128009],
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer



chatbot = gr.Chatbot(height=600)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Apa yang dimaksud tentang Stunting?"],
            ["Apa saja tanda-tanda anak mengalami stunting?"],
            ["Apa saja makanan yang bisa mencegah stunting?"],
            ["Bagaimana malnutrisi dapat mempengaruhi perkembangan otak anak?"],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()