Spaces:
Sleeping
Sleeping
File size: 6,268 Bytes
030905d 94dfd3b 030905d 39fb517 030905d 94dfd3b 030905d 3571b0e 030905d 5154cbe 030905d 5154cbe aa18d80 030905d 94dfd3b 030905d 94dfd3b 93403ab 1327db3 93403ab 1327db3 94dfd3b 030905d 154df4e 030905d 94dfd3b 030905d 93403ab 9e26a79 1327db3 93403ab 1327db3 030905d 3571b0e 1327db3 94dfd3b 9e26a79 1327db3 9e26a79 1327db3 93403ab 3571b0e 1327db3 3571b0e 1327db3 3571b0e 1327db3 3571b0e 1327db3 3571b0e 1327db3 3571b0e 94dfd3b 030905d 94dfd3b 030905d a21c5a0 8225915 030905d 94dfd3b 030905d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
from transformers import pipeline
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "kodetr/stunting-qa-v5"
MODELS = os.environ.get("MODELS")
TITLE = "<h1><center>KONSULTASI STUNTING</center></h1>"
DESCRIPTION = f"""
<center>
<p>
Developed By Tanwir
</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# -------------------------------------
# ------- use model stunting V5 -------
# -------------------------------------
# text_pipeline = pipeline(
# "text-generation",
# model=MODEL_ID,
# model_kwargs={"torch_dtype": torch.bfloat16},
# device_map="auto",
# )
# -------------------------------------
# ------- use model stunting V6 -------
# -------------------------------------
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = [{"role": "system", "content": 'Anda adalah chatbot kesehatan masyarakat yang hanya memberikan informasi dan konsultasi terkait pencegahan stunting, gizi anak, dan kesehatan ibu. Tolak semua pertanyaan yang tidak relevan atau di luar konteks ini dengan sopan.'}]
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
# -------------------------------------
# ------- use model stunting V5 -------
# -------------------------------------
# Ubah ke format prompt-style string
# conversation_text = ""
# for turn in conversation:
# role = turn["role"]
# content = turn["content"]
# if role == "system":
# conversation_text += f"[SYSTEM]: {content}\n"
# elif role == "user":
# conversation_text += f"[USER]: {content}\n"
# elif role == "assistant":
# conversation_text += f"[ASSISTANT]: {content}\n"
# terminators = [
# text_pipeline.tokenizer.eos_token_id,
# text_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
# ]
# Hasil dari pipeline akan berupa list dengan dictionary berisi text
# outputs = text_pipeline(
# conversation_text,
# max_new_tokens=max_new_tokens,
# eos_token_id=terminators,
# do_sample=True,
# temperature=temperature,
# top_p=top_p,
# top_k=top_k,
# repetition_penalty=penalty
# )
# 4. Ekstrak teks hasil dan stream per kalimat
# generated_text = outputs[0].get("generated_text", "")
# streamed_text = generated_text[len(conversation_text):].strip() # Hilangkan prompt awal
# buffer = ""
# for part in streamed_text.split(". "):
# buffer += part.strip() + ". "
# yield buffer
# -------------------------------------
# ------- use model stunting V6 -------
# -------------------------------------
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to(0) #gpu 0, cpu 1
streamer = TextIteratorStreamer(tokenizer, timeout=60., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
pad_token_id=128000,
eos_token_id=[128001,128008,128009],
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["Apa yang dimaksud tentang Stunting?"],
["Apa saja tanda-tanda anak mengalami stunting?"],
["Apa saja makanan yang bisa mencegah stunting?"],
["Bagaimana malnutrisi dapat mempengaruhi perkembangan otak anak?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |