import gradio as gr from transformers import TFBertModel, TFXLMRobertaModel import numpy as np import tensorflow as tf from transformers import AutoTokenizer app_title = "Portuguese Counter Hate Speech Detection (NFAA)" app_description = """ This app is the culmination of the kNOwHATE consortium project, which aimed to tackle Online Hate Speech in the Portuguese comunity. It serves as an user-friendly interface to classify text and identify instances of Hate Speech. This app leverages state-of-the-art Natural Language Processing models developed in the scope of this project to classify harmful text. Select a model from the dropdown menu and input your text to see the classification results. Explore the examples of Hate Speech and Non-Hate Speech offered, and join us in fostering a safer and more respectful online community. For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate). """ # 1 0 2 app_examples = [ ["Essa gente tem é de deixar de ser apaparicada pelo Estado e começar a cumprir os seus deveres como cidadãos", "Nepia o que faz com que as pessoas generalizem é o ódio intrínseco que têm contra uma etnia, ng é responsável pela sua xenofobia", "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"], ["Nem vou comentar o hate e misoginia que tenho visto aqui no tt em relação à Anitta", "E xenofobia também. Tugas no seu melhor", "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"], ["A Festa tá no Climax, chama o zuca pra Dançar.", "Já reparaste no contador da luz? Vai trabalhar malandro", "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"] ] model_list = [ "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras" ] def predict(text, target, chosen_model): model1 = tf.keras.models.load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel}) checkpoint = "neuralmind/bert-base-portuguese-cased" tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=True) tokpair = tokenizer(text, target, truncation=True, padding='max_length', return_tensors='np') outp = model1(tokpair) proto_tensor = tf.make_tensor_proto(outp) allscores = tf.make_ndarray(proto_tensor)[0] scores_dict = { 'Neutral': allscores[0], 'Counter Speech': allscores[1], 'Hate Speech': allscores[2] } return scores_dict inputs = [ gr.Textbox(label="Context", value= app_examples[0][0]), gr.Textbox(label="Target", value= app_examples[0][1]), gr.Dropdown(label="Model", choices=model_list, value=model_list[0]) ] outputs = [ gr.Label(label="Result"), ] gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title, description=app_description, examples=app_examples, theme=gr.themes.Base(primary_hue="red")).launch()