Update app.py
Browse files
app.py
CHANGED
@@ -27,18 +27,25 @@ model_list = [
|
|
27 |
"knowhate/counterhate-youtube-xlmrobertabase",
|
28 |
"knowhate/counterhate-youtube-bertbasemultilingualcased",
|
29 |
"knowhate/counterhate-twitter-bertimbau",
|
|
|
30 |
"knowhate/counterhate-twitter-xlmrobertabase",
|
31 |
def_model2,
|
32 |
-
"knowhate/counterhate-twitter-bertbasemultilingualcased"
|
|
|
33 |
]
|
34 |
|
35 |
kw_to_hf = {"knowhate/counterhate-twitter-bertimbau": "neuralmind/bert-base-portuguese-cased",
|
36 |
-
"knowhate/counterhate-
|
37 |
"knowhate/counterhate-twitter-xlmrobertabase": "xlm-roberta-base",
|
38 |
"knowhate/counterhate-twitter-xlmrobertabase-cleantxt": "xlm-roberta-base",
|
39 |
"knowhate/counterhate-twitter-bertbasemultilingualcased": "bert-base-multilingual-cased",
|
40 |
-
"knowhate/counterhate-
|
41 |
-
"knowhate/counterhate-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# 1 0 2
|
44 |
app_examples = [
|
@@ -98,9 +105,14 @@ def remove_emojis(data):
|
|
98 |
def predict(text, target, chosen_model):
|
99 |
# model1 = tf.keras.models.load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel})
|
100 |
|
|
|
|
|
101 |
if '-cleantxt' in chosen_model:
|
102 |
text = remove_emojis(text)
|
103 |
target = remove_emojis(target)
|
|
|
|
|
|
|
104 |
|
105 |
model1 = from_pretrained_keras(chosen_model)
|
106 |
|
|
|
27 |
"knowhate/counterhate-youtube-xlmrobertabase",
|
28 |
"knowhate/counterhate-youtube-bertbasemultilingualcased",
|
29 |
"knowhate/counterhate-twitter-bertimbau",
|
30 |
+
"knowhate/counterhate-twitter-bertimbau-cleantxt",
|
31 |
"knowhate/counterhate-twitter-xlmrobertabase",
|
32 |
def_model2,
|
33 |
+
"knowhate/counterhate-twitter-bertbasemultilingualcased",
|
34 |
+
"knowhate/counterhate-twitter-bertbasemultilingualcased-cleantxt"
|
35 |
]
|
36 |
|
37 |
kw_to_hf = {"knowhate/counterhate-twitter-bertimbau": "neuralmind/bert-base-portuguese-cased",
|
38 |
+
"knowhate/counterhate-twitter-bertimbau-cleantxt": "neuralmind/bert-base-portuguese-cased",
|
39 |
"knowhate/counterhate-twitter-xlmrobertabase": "xlm-roberta-base",
|
40 |
"knowhate/counterhate-twitter-xlmrobertabase-cleantxt": "xlm-roberta-base",
|
41 |
"knowhate/counterhate-twitter-bertbasemultilingualcased": "bert-base-multilingual-cased",
|
42 |
+
"knowhate/counterhate-twitter-bertbasemultilingualcased-cleantxt": "bert-base-multilingual-cased",
|
43 |
+
"knowhate/counterhate-youtube-bertimbau": "neuralmind/bert-base-portuguese-cased",
|
44 |
+
"knowhate/counterhate-youtube-xlmrobertabase": "xlm-roberta-base",
|
45 |
+
"knowhate/counterhate-youtube-bertbasemultilingualcased": "bert-base-multilingual-cased"
|
46 |
+
}
|
47 |
+
# "knowhate/counterhate-youtube-hateberttuga": "knowhate/hateberttuga",
|
48 |
+
# "knowhate/counterhate-twitter-hateberttuga": "knowhate/hateberttuga"
|
49 |
|
50 |
# 1 0 2
|
51 |
app_examples = [
|
|
|
105 |
def predict(text, target, chosen_model):
|
106 |
# model1 = tf.keras.models.load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel})
|
107 |
|
108 |
+
print(chosen_model)
|
109 |
+
|
110 |
if '-cleantxt' in chosen_model:
|
111 |
text = remove_emojis(text)
|
112 |
target = remove_emojis(target)
|
113 |
+
|
114 |
+
print(text)
|
115 |
+
print(target)
|
116 |
|
117 |
model1 = from_pretrained_keras(chosen_model)
|
118 |
|