Update app.py
Browse files
app.py
CHANGED
@@ -62,7 +62,6 @@ app_examples = [
|
|
62 |
]
|
63 |
|
64 |
|
65 |
-
|
66 |
def remove_emojis(data):
|
67 |
if '@' in data:
|
68 |
data = re.sub(r"(?<=^|(?<=[^a-zA-Z0-9-_\.]))@([A-Za-z0-9-_]+[A-Za-z0-9-_]+)", "", data).strip()
|
@@ -96,6 +95,11 @@ def remove_emojis(data):
|
|
96 |
|
97 |
def predict(text, target, chosen_model):
|
98 |
# model1 = tf.keras.models.load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel})
|
|
|
|
|
|
|
|
|
|
|
99 |
model1 = from_pretrained_keras(chosen_model)
|
100 |
|
101 |
checkpoint = kw_to_hf[chosen_model] # "neuralmind/bert-base-portuguese-cased"
|
|
|
62 |
]
|
63 |
|
64 |
|
|
|
65 |
def remove_emojis(data):
|
66 |
if '@' in data:
|
67 |
data = re.sub(r"(?<=^|(?<=[^a-zA-Z0-9-_\.]))@([A-Za-z0-9-_]+[A-Za-z0-9-_]+)", "", data).strip()
|
|
|
95 |
|
96 |
def predict(text, target, chosen_model):
|
97 |
# model1 = tf.keras.models.load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel})
|
98 |
+
|
99 |
+
if '-cleantxt' in chosen_model:
|
100 |
+
text = remove_emojis(text)
|
101 |
+
target = remove_emojis(target)
|
102 |
+
|
103 |
model1 = from_pretrained_keras(chosen_model)
|
104 |
|
105 |
checkpoint = kw_to_hf[chosen_model] # "neuralmind/bert-base-portuguese-cased"
|