Spaces:
Runtime error
Runtime error
Commit
·
4c0723a
1
Parent(s):
2873e44
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("pip install gradio==3.0.18")
|
3 |
+
os.system("pip install git+https://github.com/openai/whisper.git")
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
5 |
+
import gradio as gr
|
6 |
+
import whisper
|
7 |
+
import spacy
|
8 |
+
nlp = spacy.load('en_core_web_sm')
|
9 |
+
nlp.add_pipe('sentencizer')
|
10 |
+
|
11 |
+
|
12 |
+
model = whisper.load_model("small")
|
13 |
+
def inference(audio):
|
14 |
+
audio = whisper.load_audio(audio)
|
15 |
+
audio = whisper.pad_or_trim(audio)
|
16 |
+
|
17 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
18 |
+
|
19 |
+
_, probs = model.detect_language(mel)
|
20 |
+
|
21 |
+
options = whisper.DecodingOptions(fp16 = False)
|
22 |
+
result = whisper.decode(model, mel, options)
|
23 |
+
|
24 |
+
return result["text"]
|
25 |
+
|
26 |
+
def inference-full(audio):
|
27 |
+
result = model.transcribe(audio)
|
28 |
+
return result["text"]
|
29 |
+
|
30 |
+
def split_in_sentences(text):
|
31 |
+
doc = nlp(text)
|
32 |
+
return [str(sent).strip() for sent in doc.sents]
|
33 |
+
|
34 |
+
def make_spans(text,results):
|
35 |
+
results_list = []
|
36 |
+
for i in range(len(results)):
|
37 |
+
results_list.append(results[i]['label'])
|
38 |
+
facts_spans = []
|
39 |
+
facts_spans = list(zip(split_in_sentences(text),results_list))
|
40 |
+
return facts_spans
|
41 |
+
|
42 |
+
auth_token = os.environ.get("HF_Token")
|
43 |
+
|
44 |
+
##Speech Recognition
|
45 |
+
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
46 |
+
def transcribe(audio):
|
47 |
+
text = asr(audio)["text"]
|
48 |
+
return text
|
49 |
+
def speech_to_text(speech):
|
50 |
+
text = asr(speech)["text"]
|
51 |
+
return text
|
52 |
+
|
53 |
+
##Summarization
|
54 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM")
|
55 |
+
def summarize_text(text):
|
56 |
+
resp = summarizer(text)
|
57 |
+
stext = resp[0]['summary_text']
|
58 |
+
return stext
|
59 |
+
|
60 |
+
summarizer1 = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
61 |
+
def summarize_text1(text):
|
62 |
+
resp = summarizer1(text)
|
63 |
+
stext = resp[0]['summary_text']
|
64 |
+
return stext
|
65 |
+
|
66 |
+
summarizer2 = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
|
67 |
+
def summarize_text2(text):
|
68 |
+
resp = summarizer2(text)
|
69 |
+
stext = resp[0]['summary_text']
|
70 |
+
return stext
|
71 |
+
|
72 |
+
##Fiscal Tone Analysis
|
73 |
+
sen_model= pipeline("sentiment-analysis", model='knkarthick/Sentiment-Analysis', tokenizer='knkarthick/Sentiment-Analysis')
|
74 |
+
def text_to_sentiment(text):
|
75 |
+
sentiment = sen_model(text)[0]["label"]
|
76 |
+
return sentiment
|
77 |
+
|
78 |
+
##Fiscal Sentiment by Sentence
|
79 |
+
def sen_ext(text):
|
80 |
+
results = sen_model(split_in_sentences(text))
|
81 |
+
return make_spans(text,results)
|
82 |
+
|
83 |
+
demo = gr.Blocks()
|
84 |
+
|
85 |
+
with demo:
|
86 |
+
gr.Markdown("## Meeting Transcript AI Use Cases")
|
87 |
+
gr.Markdown("Takes Meeting Data/ Recording/ Record Meetings and give out Summary & Sentiment of the discussion")
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
91 |
+
with gr.Row():
|
92 |
+
b1 = gr.Button("Recognize Speech")
|
93 |
+
with gr.Row():
|
94 |
+
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
|
95 |
+
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
96 |
+
with gr.Row():
|
97 |
+
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
|
98 |
+
b1.click(inference, inputs=audio_file, outputs=text)
|
99 |
+
with gr.Row():
|
100 |
+
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
|
101 |
+
b1.click(inference-full, inputs=audio_file, outputs=text)
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
b2 = gr.Button("Overall Sentiment Analysis of Dialogues")
|
105 |
+
fin_spans = gr.HighlightedText()
|
106 |
+
b2.click(sen_ext, inputs=text, outputs=fin_spans)
|
107 |
+
with gr.Row():
|
108 |
+
b3 = gr.Button("Summary Text Outputs")
|
109 |
+
with gr.Column():
|
110 |
+
with gr.Row():
|
111 |
+
stext = gr.Textbox(label="Model-I")
|
112 |
+
b3.click(summarize_text, inputs=text, outputs=stext)
|
113 |
+
with gr.Column():
|
114 |
+
with gr.Row():
|
115 |
+
stext1 = gr.Textbox(label="Model-II")
|
116 |
+
b3.click(summarize_text1, inputs=text, outputs=stext1)
|
117 |
+
with gr.Column():
|
118 |
+
with gr.Row():
|
119 |
+
stext2 = gr.Textbox(label="Model-III")
|
120 |
+
b3.click(summarize_text2, inputs=text, outputs=stext2)
|
121 |
+
with gr.Row():
|
122 |
+
b4 = gr.Button("Sentiment Analysis")
|
123 |
+
with gr.Column():
|
124 |
+
with gr.Row():
|
125 |
+
label = gr.Label(label="Sentiment Of Summary-I")
|
126 |
+
b4.click(text_to_sentiment, inputs=stext, outputs=label)
|
127 |
+
with gr.Column():
|
128 |
+
with gr.Row():
|
129 |
+
label1 = gr.Label(label="Sentiment Of Summary-II")
|
130 |
+
b4.click(text_to_sentiment, inputs=stext1, outputs=label1)
|
131 |
+
with gr.Column():
|
132 |
+
with gr.Row():
|
133 |
+
label2 = gr.Label(label="Sentiment Of Summary-III")
|
134 |
+
b4.click(text_to_sentiment, inputs=stext2, outputs=label2)
|
135 |
+
with gr.Row():
|
136 |
+
b5 = gr.Button("Dialogue Sentiment Analysis")
|
137 |
+
with gr.Column():
|
138 |
+
with gr.Row():
|
139 |
+
fin_spans = gr.HighlightedText(label="Sentiment Of Summary-I Dialogues")
|
140 |
+
b5.click(sen_ext, inputs=stext, outputs=fin_spans)
|
141 |
+
with gr.Column():
|
142 |
+
with gr.Row():
|
143 |
+
fin_spans1 = gr.HighlightedText(label="Sentiment Of Summary-II Dialogues")
|
144 |
+
b5.click(sen_ext, inputs=stext1, outputs=fin_spans1)
|
145 |
+
with gr.Column():
|
146 |
+
with gr.Row():
|
147 |
+
fin_spans2 = gr.HighlightedText(label="Sentiment Of Summary-III Dialogues")
|
148 |
+
b5.click(sen_ext, inputs=stext2, outputs=fin_spans2)
|
149 |
+
demo.launch()
|