Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,12 @@
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import random
|
4 |
import uuid
|
@@ -7,7 +15,7 @@ import numpy as np
|
|
7 |
from PIL import Image
|
8 |
import spaces
|
9 |
import torch
|
10 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
css = '''
|
13 |
.gradio-container{max-width: 570px !important}
|
@@ -18,9 +26,7 @@ footer {
|
|
18 |
'''
|
19 |
|
20 |
DESCRIPTIONXX = """
|
21 |
-
|
22 |
## TEXT 2 IMAGE🥠
|
23 |
-
|
24 |
"""
|
25 |
examples = [
|
26 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -33,7 +39,7 @@ examples = [
|
|
33 |
MODEL_OPTIONS = {
|
34 |
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
35 |
"Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
|
36 |
-
|
37 |
}
|
38 |
|
39 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
@@ -44,13 +50,20 @@ BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
|
44 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
45 |
|
46 |
def load_and_prepare_model(model_id):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if USE_TORCH_COMPILE:
|
56 |
pipe.compile()
|
@@ -60,7 +73,7 @@ def load_and_prepare_model(model_id):
|
|
60 |
|
61 |
return pipe
|
62 |
|
63 |
-
# Preload and compile
|
64 |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
65 |
|
66 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
1 |
#!/usr/bin/env python
|
2 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
3 |
+
# of this software and associated documentation files (the "Software"), to deal
|
4 |
+
# in the Software without restriction, including without limitation the rights
|
5 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
6 |
+
# copies of the Software, and to permit persons to whom the Software is
|
7 |
+
# furnished to do so, subject to the following conditions:
|
8 |
+
#
|
9 |
+
# ...
|
10 |
import os
|
11 |
import random
|
12 |
import uuid
|
|
|
15 |
from PIL import Image
|
16 |
import spaces
|
17 |
import torch
|
18 |
+
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
19 |
|
20 |
css = '''
|
21 |
.gradio-container{max-width: 570px !important}
|
|
|
26 |
'''
|
27 |
|
28 |
DESCRIPTIONXX = """
|
|
|
29 |
## TEXT 2 IMAGE🥠
|
|
|
30 |
"""
|
31 |
examples = [
|
32 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
39 |
MODEL_OPTIONS = {
|
40 |
"Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
41 |
"Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
|
42 |
+
"FLUX.1-schnell": "black-forest-labs/FLUX.1-schnell",
|
43 |
}
|
44 |
|
45 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
|
|
50 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
51 |
|
52 |
def load_and_prepare_model(model_id):
|
53 |
+
if model_id == "black-forest-labs/FLUX.1-schnell":
|
54 |
+
pipe = DiffusionPipeline.from_pretrained(
|
55 |
+
model_id,
|
56 |
+
torch_dtype=torch.bfloat16,
|
57 |
+
revision="refs/pr/1"
|
58 |
+
).to(device)
|
59 |
+
else:
|
60 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
61 |
+
model_id,
|
62 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
63 |
+
use_safetensors=True,
|
64 |
+
add_watermarker=False,
|
65 |
+
).to(device)
|
66 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
67 |
|
68 |
if USE_TORCH_COMPILE:
|
69 |
pipe.compile()
|
|
|
73 |
|
74 |
return pipe
|
75 |
|
76 |
+
# Preload and compile all models
|
77 |
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
|
78 |
|
79 |
MAX_SEED = np.iinfo(np.int32).max
|