prithivMLmods commited on
Commit
58d6fbb
·
verified ·
1 Parent(s): 0d9ccf7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -12
app.py CHANGED
@@ -1,4 +1,12 @@
1
  #!/usr/bin/env python
 
 
 
 
 
 
 
 
2
  import os
3
  import random
4
  import uuid
@@ -7,7 +15,7 @@ import numpy as np
7
  from PIL import Image
8
  import spaces
9
  import torch
10
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
 
12
  css = '''
13
  .gradio-container{max-width: 570px !important}
@@ -18,9 +26,7 @@ footer {
18
  '''
19
 
20
  DESCRIPTIONXX = """
21
-
22
  ## TEXT 2 IMAGE🥠
23
-
24
  """
25
  examples = [
26
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
@@ -33,7 +39,7 @@ examples = [
33
  MODEL_OPTIONS = {
34
  "Lightning": "SG161222/RealVisXL_V4.0_Lightning",
35
  "Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
36
-
37
  }
38
 
39
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
@@ -44,13 +50,20 @@ BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
44
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
45
 
46
  def load_and_prepare_model(model_id):
47
- pipe = StableDiffusionXLPipeline.from_pretrained(
48
- model_id,
49
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
50
- use_safetensors=True,
51
- add_watermarker=False,
52
- ).to(device)
53
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
 
 
 
 
 
 
 
54
 
55
  if USE_TORCH_COMPILE:
56
  pipe.compile()
@@ -60,7 +73,7 @@ def load_and_prepare_model(model_id):
60
 
61
  return pipe
62
 
63
- # Preload and compile both models
64
  models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
65
 
66
  MAX_SEED = np.iinfo(np.int32).max
 
1
  #!/usr/bin/env python
2
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
3
+ # of this software and associated documentation files (the "Software"), to deal
4
+ # in the Software without restriction, including without limitation the rights
5
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
6
+ # copies of the Software, and to permit persons to whom the Software is
7
+ # furnished to do so, subject to the following conditions:
8
+ #
9
+ # ...
10
  import os
11
  import random
12
  import uuid
 
15
  from PIL import Image
16
  import spaces
17
  import torch
18
+ from diffusers import DiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
19
 
20
  css = '''
21
  .gradio-container{max-width: 570px !important}
 
26
  '''
27
 
28
  DESCRIPTIONXX = """
 
29
  ## TEXT 2 IMAGE🥠
 
30
  """
31
  examples = [
32
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
 
39
  MODEL_OPTIONS = {
40
  "Lightning": "SG161222/RealVisXL_V4.0_Lightning",
41
  "Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
42
+ "FLUX.1-schnell": "black-forest-labs/FLUX.1-schnell",
43
  }
44
 
45
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
 
50
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
51
 
52
  def load_and_prepare_model(model_id):
53
+ if model_id == "black-forest-labs/FLUX.1-schnell":
54
+ pipe = DiffusionPipeline.from_pretrained(
55
+ model_id,
56
+ torch_dtype=torch.bfloat16,
57
+ revision="refs/pr/1"
58
+ ).to(device)
59
+ else:
60
+ pipe = StableDiffusionXLPipeline.from_pretrained(
61
+ model_id,
62
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
63
+ use_safetensors=True,
64
+ add_watermarker=False,
65
+ ).to(device)
66
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
67
 
68
  if USE_TORCH_COMPILE:
69
  pipe.compile()
 
73
 
74
  return pipe
75
 
76
+ # Preload and compile all models
77
  models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
78
 
79
  MAX_SEED = np.iinfo(np.int32).max