import streamlit as st import difflib import pandas as pd import numpy as np # for text data preprocessing import re import nltk nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity lpi_df = pd.read_csv('Learning_Pathway_Index.csv') lpi_df['combined_features'] = lpi_df['Course_Learning_Material']+' '+lpi_df['Source']+' '+lpi_df['Course_Level']+' '+lpi_df['Type']+' '+lpi_df['Module']+' '+lpi_df['Difficulty_Level']+' '+lpi_df['Keywords_Tags_Skills_Interests_Categories'] combined_features = lpi_df['combined_features'] porter_stemmer = PorterStemmer() def stemming(content): stemmed_content = re.sub('[^a-zA-Z]',' ',content) stemmed_content = stemmed_content.lower() stemmed_content = stemmed_content.split() stemmed_content = [porter_stemmer.stem(word) for word in stemmed_content if not word in stopwords.words('english')] stemmed_content = ' '.join(stemmed_content) return stemmed_content combined_features = combined_features.apply(stemming) vectorizer = TfidfVectorizer() vectorizer.fit(combined_features) combined_features = vectorizer.transform(combined_features) similarity = cosine_similarity(combined_features) st.title('Course Recommendation App') user_input = st.text_input('Enter What You Want to Learn : ') if user_input: list_of_all_titles = lpi_df['Module'].tolist() find_close_match = difflib.get_close_matches(user_input, list_of_all_titles) if find_close_match: close_match = find_close_match[0] index_of_the_course = lpi_df[lpi_df.Module == close_match].index.values[0] similarity_score = list(enumerate(similarity[index_of_the_course])) sorted_similar_course = sorted(similarity_score, key=lambda x: x[1], reverse=True) st.write('Courses suggested for you :') i = 1 for course in sorted_similar_course: index = course[0] title_from_index = lpi_df[lpi_df.index == index]['Module'].values[0] if i < 30: st.write(f"{i}. {title_from_index}") i += 1 if i == 1: st.write('No close matches found.') else: st.write('No close matches found.')