import streamlit as st import difflib import pandas as pd # Assuming you have 'lpi_df' and 'similarity' defined before this point lpi_df = pd.read_csv('https://huggingface.co/spaces/kmrmanish/LPI_Course_Recommendation_System/blob/f273238053ba214e906f36c6e31c047cf5ed6011/Learning_Pathway_Index.csv') st.title('Course Recommendation App') user_input = st.text_input('Enter What You Want to Learn : ') if user_input: list_of_all_titles = lpi_df['Module'].tolist() find_close_match = difflib.get_close_matches(user_input, list_of_all_titles) if find_close_match: close_match = find_close_match[0] index_of_the_course = lpi_df[lpi_df.Module == close_match].index.values[0] similarity_score = list(enumerate(similarity[index_of_the_course])) sorted_similar_course = sorted(similarity_score, key=lambda x: x[1], reverse=True) st.write('Courses suggested for you :') i = 1 for course in sorted_similar_course: index = course[0] title_from_index = lpi_df[lpi_df.index == index]['Module'].values[0] if i < 30: st.write(f"{i}. {title_from_index}") i += 1 if i == 1: st.write('No close matches found.') else: st.write('No close matches found.')