|
import streamlit as st |
|
import difflib |
|
|
|
|
|
|
|
st.title('Course Recommendation App') |
|
|
|
user_input = st.text_input('Enter What You Want to Learn : ') |
|
|
|
if user_input: |
|
list_of_all_titles = lpi_df['Module'].tolist() |
|
find_close_match = difflib.get_close_matches(user_input, list_of_all_titles) |
|
|
|
if find_close_match: |
|
close_match = find_close_match[0] |
|
index_of_the_course = lpi_df[lpi_df.Module == close_match].index.values[0] |
|
similarity_score = list(enumerate(similarity[index_of_the_course])) |
|
sorted_similar_course = sorted(similarity_score, key=lambda x: x[1], reverse=True) |
|
|
|
st.write('Courses suggested for you :') |
|
|
|
i = 1 |
|
for course in sorted_similar_course: |
|
index = course[0] |
|
title_from_index = lpi_df[lpi_df.index == index]['Module'].values[0] |
|
if i < 30: |
|
st.write(f"{i}. {title_from_index}") |
|
i += 1 |
|
|
|
if i == 1: |
|
st.write('No close matches found.') |
|
else: |
|
st.write('No close matches found.') |
|
|
|
|