kmrmanish's picture
Update app.py
438c423
raw
history blame
1.31 kB
import streamlit as st
import difflib
import pandas as pd
# Assuming you have 'lpi_df' and 'similarity' defined before this point
lpi_df = pd.read_csv('https://huggingface.co/spaces/kmrmanish/LPI_Course_Recommendation_System/blob/f273238053ba214e906f36c6e31c047cf5ed6011/Learning_Pathway_Index.csv')
st.title('Course Recommendation App')
user_input = st.text_input('Enter What You Want to Learn : ')
if user_input:
list_of_all_titles = lpi_df['Module'].tolist()
find_close_match = difflib.get_close_matches(user_input, list_of_all_titles)
if find_close_match:
close_match = find_close_match[0]
index_of_the_course = lpi_df[lpi_df.Module == close_match].index.values[0]
similarity_score = list(enumerate(similarity[index_of_the_course]))
sorted_similar_course = sorted(similarity_score, key=lambda x: x[1], reverse=True)
st.write('Courses suggested for you :')
i = 1
for course in sorted_similar_course:
index = course[0]
title_from_index = lpi_df[lpi_df.index == index]['Module'].values[0]
if i < 30:
st.write(f"{i}. {title_from_index}")
i += 1
if i == 1:
st.write('No close matches found.')
else:
st.write('No close matches found.')