import gradio as gr import nltk nltk.download('omw-1.4') from qanom.nominalization_detector import NominalizationDetector detector = NominalizationDetector() title = "Nominalization Detection Demo" description = f"""This is a demo of QANom's nominalization detection algorithm, comprised of candidate nominalization extraction followed by a contextualized binary classification model.""" links = """<p style='text-align: center'> <a href='https://github.com/kleinay/QANom' target='_blank'>QANom repo</a> | <a href='https://huggingface.co/kleinay/nominalization-candidate-classifier' target='_blank'>Model Repo at Huggingface Hub</a> | <a href='https://www.aclweb.org/anthology/2020.coling-main.274/' target='_blank'>QANom Paper</a> | </p>""" examples = [["The doctor was interested in Luke 's treatment .", True, True, 0.6], ["the construction of the officer 's building finished right after the beginning of the destruction of the previous construction .", True, True, 0.7]] def call(sentence: str, return_all_candidates: bool, threshold: float): ret = detector([sentence], return_all_candidates, True, threshold)[0] return ret, ret iface = gr.Interface(fn=call, inputs=[gr.inputs.Textbox(label="Sentence", lines=3), gr.inputs.Checkbox(default=True, label="Return all candidates?"), gr.inputs.Slider(minimum=0., maximum=1., step=0.01, default=0.5, label="Threshold")], outputs=[gr.outputs.JSON(label="Model Output"), gr.outputs.JSON(label="Model Output - QASRL")], title=title, description=description, article=links, examples=examples ) iface.launch()