kleinay's picture
first commit
a3d296b
raw
history blame
1.79 kB
import gradio as gr
import nltk
nltk.download('omw-1.4')
from qanom.nominalization_detector import NominalizationDetector
detector = NominalizationDetector()
title = "Nominalization Detection Demo"
description = f"""This is a demo of QANom's nominalization detection algorithm,
comprised of candidate nominalization extraction followed by a contextualized binary classification model."""
links = """<p style='text-align: center'>
<a href='https://github.com/kleinay/QANom' target='_blank'>QANom repo</a> |
<a href='https://huggingface.co/kleinay/nominalization-candidate-classifier' target='_blank'>Model Repo at Huggingface Hub</a> |
<a href='https://www.aclweb.org/anthology/2020.coling-main.274/' target='_blank'>QANom Paper</a> |
</p>"""
examples = [["The doctor was interested in Luke 's treatment .", True, True, 0.6],
["the construction of the officer 's building finished right after the beginning of the destruction of the previous construction .", True, True, 0.7]]
def call(sentence: str, return_all_candidates: bool, threshold: float):
ret = detector([sentence], return_all_candidates, True, threshold)[0]
return ret, ret
iface = gr.Interface(fn=call,
inputs=[gr.inputs.Textbox(label="Sentence", lines=3),
gr.inputs.Checkbox(default=True, label="Return all candidates?"),
gr.inputs.Slider(minimum=0., maximum=1., step=0.01, default=0.5, label="Threshold")],
outputs=[gr.outputs.JSON(label="Model Output"), gr.outputs.JSON(label="Model Output - QASRL")],
title=title,
description=description,
article=links,
examples=examples )
iface.launch()