kkawamu1's picture
Commit codes
3f13a7b
raw
history blame
6.9 kB
import base64
import importlib.util
import math
import re
import uuid
from types import ModuleType
from typing import Dict
import datasets
import jupytext
import requests
import streamlit as st
from datasets import DatasetInfo, get_dataset_infos
from datasets.info import DatasetInfosDict
from configuration import INCLUDED_USERS, TASKS_TO_PIPELINE_TAG
def import_from_file(module_name: str, filepath: str) -> ModuleType:
"""
Imports a module from file.
Args:
module_name (str): Assigned to the module's __name__ parameter (does not
influence how the module is named outside of this function)
filepath (str): Path to the .py file
Returns:
The module
"""
spec = importlib.util.spec_from_file_location(module_name, filepath)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
def notebook_header(text: str):
"""
Insert section header into a jinja file, formatted as notebook cell.
Leave 2 blank lines before the header.
"""
return f"""# # {text}
"""
def code_header(text: str):
"""
Insert section header into a jinja file, formatted as Python comment.
Leave 2 blank lines before the header.
"""
seperator_len = (75 - len(text)) / 2
seperator_len_left = math.floor(seperator_len)
seperator_len_right = math.ceil(seperator_len)
return f"# {'-' * seperator_len_left} {text} {'-' * seperator_len_right}"
def to_notebook(code: str) -> str:
"""Converts Python code to Jupyter notebook format."""
notebook = jupytext.reads(code, fmt="py")
# print(jupytext.writes(notebook, fmt="ipynb"))
return jupytext.writes(notebook, fmt="ipynb")
def download_button(
object_to_download: str, download_filename: str, button_text: str # , pickle_it=False
):
"""
Generates a link to download the given object_to_download.
From: https://discuss.streamlit.io/t/a-download-button-with-custom-css/4220
Params:
------
object_to_download: The object to be downloaded.
download_filename (str): filename and extension of file. e.g. mydata.csv,
some_txt_output.txt download_link_text (str): Text to display for download
link.
button_text (str): Text to display on download button (e.g. 'click here to download file')
pickle_it (bool): If True, pickle file.
Returns:
-------
(str): the anchor tag to download object_to_download
Examples:
--------
download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
"""
# try:
# # some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
# except AttributeError:
# b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace("-", "")
button_id = re.sub("\d+", "", button_uuid)
custom_css = f"""
<style>
#{button_id} {{
display: inline-flex;
align-items: center;
justify-content: center;
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: .25rem .75rem;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
dl_link = (
custom_css
+ f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br><br>'
)
st.markdown(dl_link, unsafe_allow_html=True)
@st.cache
def get_model_to_model_id() -> Dict[str, Dict[str, str]]:
requests.get("https://huggingface.co")
response = requests.get("https://huggingface.co/api/models")
tags = response.json()
model_to_model_id = {}
model_to_pipeline_tag = {}
for model in tags:
model_name = model['modelId']
is_community_model = "/" in model_name
if is_community_model:
user = model_name.split("/")[0]
if user not in INCLUDED_USERS:
continue
# TODO Right now if pipiline is not defined, skip
if "pipeline_tag" in model:
model_to_model_id[model['id']] = model['modelId']
model_to_pipeline_tag[model['id']] = model["pipeline_tag"]
return {"model_to_model_id": model_to_model_id, "model_to_pipeline_tag": model_to_pipeline_tag}
@st.cache
def get_datasets() -> Dict[str, str]:
english_datasets = {}
response = requests.get(
"https://huggingface.co/api/datasets?full=true&languages=en")
tags = response.json()
for dataset in tags:
dataset_name = dataset["id"]
is_community_dataset = "/" in dataset_name
if is_community_dataset:
# user = dataset_name.split("/")[0]
# if user in INCLUDED_USERS:
# english_datasets.append(dataset_name)
continue
if "cardData" not in dataset:
continue
metadata = dataset["cardData"]
if "languages" not in metadata:
continue
if "task_categories" not in metadata:
continue
task_is_valid = False
for task_category in metadata["task_categories"]:
if any(task_category in task for task in list(TASKS_TO_PIPELINE_TAG.values())):
task_is_valid = True
if not task_is_valid:
continue
languages = metadata["languages"]
if "en" in languages or "en-US" in languages:
english_datasets[dataset_name] = metadata["task_categories"]
return english_datasets
@st.cache
def get_dataset_infos_dict(dataset: str, subset: str) -> DatasetInfo:
return DatasetInfosDict(get_dataset_infos(dataset))[subset]
# https://github.com/huggingface/datasets-viewer/blob/master/run.py#L49
def render_features(features):
# TODO redner translation object with the languages tags
if isinstance(features, dict):
return {k: render_features(v) for k, v in features.items()}
if isinstance(features, datasets.features.ClassLabel):
return features.names
if isinstance(features, datasets.features.Value):
return features.dtype
if isinstance(features, datasets.features.Sequence):
return {"[]": render_features(features.feature)}
return features