File size: 6,292 Bytes
3f13a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Before running, install required packages:
{% if notebook %}

!
{%- else %}
#
{%- endif %}
pip install datasets transformers

import collections
import math
import logging

import numpy as np
import transformers
import datasets
from datasets import load_dataset
from transformers import (AutoConfig, AutoModelForMaskedLM, AutoTokenizer,
                          DataCollatorForLanguageModeling, Trainer,
                          TrainingArguments, default_data_collator, set_seed)
from transformers.testing_utils import CaptureLogger
from transformers.utils.versions import require_version

{{ header("Setup") }}


logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0")
set_seed({{ seed }})
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.ERROR,
)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()


{{ header("Load model and dataset") }}

{% if subset == 'default' %}
datasets = load_dataset('{{dataset}}')
{% else %}
datasets = load_dataset('{{dataset}}', '{{ subset }}')
{% endif %}
model_checkpoint = "{{model_checkpoint}}"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
{% if pretrained %}
model = AutoModelFor{{task}}.from_pretrained(model_checkpoint)
{% else %}
config = AutoConfig.from_pretrained(model_checkpoint)
model = AutoModelFor{{task}}.from_config(config)
{% endif %}
model.resize_token_embeddings(len(tokenizer))
model_name = model_checkpoint.split("/")[-1]

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

{{ header("Preprocessing") }}

# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
def tokenize_function(examples):
    with CaptureLogger(tok_logger) as cl:
        result = tokenizer(examples["{{ feature }}"])
    if "Token indices sequence length is longer than the" in cl.out:
        tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
            )
    if tokenizer.is_fast:
        result["word_ids"] = [result.word_ids(i) for i in range(len(result["input_ids"]))]
    return result

tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=list(set(sum(list(datasets.column_names.values()),[]))), desc="Running tokenizer on dataset"
    )
block_size = {{ block_size }}

def group_texts(examples):
    # Concatenate all texts.
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result

lm_datasets = tokenized_datasets.map(
    group_texts,
    batched=True,
    batch_size=1000,
    num_proc=4,
    desc=f"Grouping texts in chunks of {block_size}",
)

{{ header("Training") }}

training_args = TrainingArguments(
    output_dir=f"{model_name}-finetuned",
    per_device_train_batch_size={{ batch_size }},
    per_device_eval_batch_size={{ batch_size }},
    evaluation_strategy='epoch',
    logging_strategy='epoch',
    save_strategy='epoch',
    optim='{{ optimizer }}',
    learning_rate={{ lr }},
    num_train_epochs={{ num_epochs }},
    gradient_accumulation_steps={{ gradient_accumulation_steps }},
    lr_scheduler_type='{{ lr_scheduler_type }}',
    warmup_steps={{ num_warmup_steps }},
    {% if use_weight_decay%}
    weight_decay={{ weight_decay }},
    {% endif %}
    push_to_hub=False,
    dataloader_num_workers=0,
    {% if task=="MaskedLM" %}
    {% if whole_word_masking %}
    remove_unused_columns=False,
    {% endif %}
    {% endif %}
    load_best_model_at_end=True,
    log_level='error' 
)


{% if whole_word_masking %}
def whole_word_masking_data_collator(features):
    for feature in features:
        word_ids = feature.pop("word_ids")

        # Create a map between words and corresponding token indices
        mapping = collections.defaultdict(list)
        current_word_index = -1
        current_word = None
        for idx, word_id in enumerate(word_ids):
            if word_id is not None:
                if word_id != current_word:
                    current_word = word_id
                    current_word_index += 1
                mapping[current_word_index].append(idx)

        # Randomly mask words
        wwm_probability = {{ mlm_probability }}
        mask = np.random.binomial(1, wwm_probability, (len(mapping),))
        input_ids = feature["input_ids"]
        labels = feature["labels"]
        new_labels = [-100] * len(labels)
        for word_id in np.where(mask)[0]:
            word_id = word_id.item()
            for idx in mapping[word_id]:
                new_labels[idx] = labels[idx]
                input_ids[idx] = tokenizer.mask_token_id

    return default_data_collator(features)
data_collator = whole_word_masking_data_collator
    {% else %}
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability={{ mlm_probability }})
{% endif %}


trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=lm_datasets["{{ train }}"],
    eval_dataset=lm_datasets["{{ validation }}"],
    data_collator=data_collator,
)

train_result = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
eval_results = trainer.evaluate()
eval_results["perplexity"] = math.exp(eval_results['eval_loss'])
print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")
trainer.log_metrics("eval", eval_results)
trainer.save_metrics("eval", eval_results)