File size: 9,081 Bytes
3f13a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Before running, install required packages:
{% if notebook %}

!
{%- else %}
#
{%- endif %}
pip install datasets transformers[sentencepiece] accelerate

import collections
import logging
import math

import datasets
import numpy as np
import torch
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from codecarbon import EmissionsTracker
from datasets import load_dataset
from torch.optim import {{ optimizer }}
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from transformers import (AutoConfig, AutoModelForMaskedLM, AutoTokenizer,
                          DataCollatorForLanguageModeling, Trainer,
                          TrainingArguments, default_data_collator,
                          get_scheduler)
from transformers.utils.versions import require_version

{{ header("Setup") }}

tracker = EmissionsTracker(log_level='error')
tracker.start()

logger = get_logger(__name__)
require_version("datasets>=1.8.0")

accelerator = Accelerator()
set_seed({{ seed }})

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.ERROR,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()
else:
    datasets.utils.logging.set_verbosity_error()
    transformers.utils.logging.set_verbosity_error()

{{ header("Load model and dataset") }}

{% if subset == 'default' %}
datasets = load_dataset('{{dataset}}')
{% else %}
datasets = load_dataset('{{dataset}}', '{{ subset }}')
{% endif %}
model_checkpoint = "{{model_checkpoint}}"    
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
{% if pretrained %}
model = AutoModelFor{{task}}.from_pretrained(model_checkpoint)
{% else %}
config = AutoConfig.from_pretrained(model_checkpoint)
model = AutoModelFor{{task}}.from_config(config)
{% endif %}
model.resize_token_embeddings(len(tokenizer))
model_name = model_checkpoint.split("/")[-1]
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

{{ header("Preprocessing") }}

def tokenize_function(examples):
    result = tokenizer(examples["{{ feature }}"])
    {% if task=="MaskedLM" %}
    {% if whole_word_masking %}
    if tokenizer.is_fast:
        result["word_ids"] = [result.word_ids(i) for i in range(len(result["input_ids"]))]
    {% endif %}
    {% endif %}
    return result

with accelerator.main_process_first():
    tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=list(set(sum(list(datasets.column_names.values()),[]))), desc="Running tokenizer on dataset"
    )

block_size = {{ block_size }}

def group_texts(examples):
    # Concatenate all texts.
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result

with accelerator.main_process_first():
    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        batch_size=1000,
        num_proc=4,
        desc=f"Grouping texts in chunks of {block_size}",
    )

{% if whole_word_masking %}
def whole_word_masking_data_collator(features):
    for feature in features:
        word_ids = feature.pop("word_ids")

        # Create a map between words and corresponding token indices
        mapping = collections.defaultdict(list)
        current_word_index = -1
        current_word = None
        for idx, word_id in enumerate(word_ids):
            if word_id is not None:
                if word_id != current_word:
                    current_word = word_id
                    current_word_index += 1
                mapping[current_word_index].append(idx)

        # Randomly mask words
        wwm_probability = {{ mlm_probability }}
        mask = np.random.binomial(1, wwm_probability, (len(mapping),))
        input_ids = feature["input_ids"]
        labels = feature["labels"]
        new_labels = [-100] * len(labels)
        for word_id in np.where(mask)[0]:
            word_id = word_id.item()
            for idx in mapping[word_id]:
                new_labels[idx] = labels[idx]
                input_ids[idx] = tokenizer.mask_token_id

    return default_data_collator(features)

data_collator = whole_word_masking_data_collator
{% else %}
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability={{ mlm_probability }})
{% endif %}

def insert_random_mask(batch):
    features = [dict(zip(batch, t)) for t in zip(*batch.values())]
    masked_inputs = data_collator(features)
    # Create a new "masked" column for each column in the dataset
    return {"masked_" + k: v.numpy() for k, v in masked_inputs.items()}

{% if whole_word_masking %}
lm_datasetst = lm_datasets.remove_columns(["word_ids"])
{% endif %}
with accelerator.main_process_first():
    eval_dataset = lm_datasets["{{ validation }}"].map(
        insert_random_mask,
        batched=True,
        remove_columns=lm_datasets["{{ validation }}"].column_names,
        desc="Inserting a random mask on eval dataset"
    )

eval_dataset = eval_dataset.rename_columns(
    {
        name: name.split('masked_')[1] for name in eval_dataset.features.keys()
    }
)


batch_size = {{ batch_size }}
train_dataloader = DataLoader(
    lm_datasets["{{ train }}"],
    shuffle=True,
    batch_size=batch_size,
    collate_fn=data_collator,
)
eval_dataloader = DataLoader(
    eval_dataset, batch_size=batch_size, collate_fn=default_data_collator
)

{{ header("Training") }}

{% if use_weight_decay %}
weight_decay = {{ weight_decay }}
def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
    params_with_wd, params_without_wd = [], []
    for n, p in model.named_parameters():
        if any(nd in n for nd in no_decay):
            params_without_wd.append(p)
        else:
            params_with_wd.append(p)
    return [
        {"params": params_with_wd, "weight_decay": weight_decay},
        {"params": params_without_wd, "weight_decay": 0.0},
    ]

optimizer = {{ optimizer }}(get_grouped_params(model), lr={{ lr }})
{% else %}
optimizer = {{ optimizer }}(model.parameters(), lr={{ lr }})
{% endif %}

accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader
)

num_train_epochs = {{ num_epochs }}
gradient_accumulation_steps = {{ gradient_accumulation_steps }}
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
max_train_steps = num_train_epochs * num_update_steps_per_epoch
output_dir=f"{model_name}-finetuned"

lr_scheduler = get_scheduler(
    '{{ lr_scheduler_type }}',
    optimizer=optimizer,
    num_warmup_steps={{ num_warmup_steps }},
    num_training_steps=max_train_steps,
)

progress_bar = tqdm(range(max_train_steps), disable=not accelerator.is_local_main_process)
for epoch in range(num_train_epochs):
    # Training
    model.train()
    for step, batch in enumerate(train_dataloader):
        outputs = model(**batch)
        loss = outputs.loss / gradient_accumulation_steps
        accelerator.backward(loss)
        
        if step % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
            #TODO Let the user decide on clip grad norm 
            accelerator.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            progress_bar.update(1)

    # Evaluation
    model.eval()
    losses = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(**batch)

        loss = outputs.loss
        losses.append(accelerator.gather(loss.repeat(batch_size)))

    losses = torch.cat(losses)
    losses = losses[: len(eval_dataset)]
    try:
        eval_loss = torch.mean(losses)
        perplexity = math.exp(eval_loss)
    except OverflowError:
        perplexity = float("inf")
    accelerator.print({"loss/eval": eval_loss, "perplexity": perplexity})
    model.train()
    accelerator.wait_for_everyone()
    unwrapped_model = accelerator.unwrap_model(model)
    unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
    if accelerator.is_main_process:
        tokenizer.save_pretrained(output_dir)

emissions = tracker.stop()
accelerator.print(f'Emissions: {emissions} kg')