Spaces:
Runtime error
Runtime error
File size: 8,322 Bytes
3f13a7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import collections
import os
from typing import Dict
import streamlit as st
from datasets import get_dataset_config_names
from jinja2 import Environment, FileSystemLoader
import utils
from configuration import OPTIMIZERS_ACCELERATE, OPTIMIZERS_TRAINER, TASKS, TASKS_TO_PIPELINE_TAG
from utils import (get_dataset_infos_dict, get_datasets, get_model_to_model_id,
render_features)
def show_API_component(inputs: Dict[str, str]) -> Dict[str, str]:
template_dict = collections.defaultdict()
template_dirs = [
f for f in os.scandir("templates") if f.is_dir() and f.name != "example"
]
template_dirs = sorted(template_dirs, key=lambda e: e.name)
for template_dir in template_dirs:
template_dict[template_dir.name] = template_dir.path
st.write("## API")
inputs['api'] = st.selectbox(
"Which Hugging Face API do you want to use?", list(template_dict.keys())
)
inputs['template_dir'] = template_dict.get(inputs['api'])
return inputs
def show_model_component(inputs: Dict[str, str]) -> Dict[str, str]:
model_info = get_model_to_model_id()
models = model_info['model_to_model_id']
models_pipeline = model_info["model_to_pipeline_tag"]
st.write("## Model")
models_for_task = []
for model in models:
if (models_pipeline[model] == inputs["nlp_task"]):
models_for_task.append(model)
model = st.selectbox("Which model?", list(models_for_task))
inputs["model_checkpoint"] = models.get(model)
inputs["pretrained"] = st.checkbox("Use pre-trained model")
return inputs
def show_task_component(inputs: Dict[str, str]) -> Dict[str, str]:
st.write("## Task")
task = st.selectbox("Which task?", TASKS)
inputs["task"] = task
inputs["nlp_task"] = st.selectbox(
"Which NLP task?", TASKS_TO_PIPELINE_TAG[task])
return inputs
def show_input_data_component(inputs: Dict[str, str]) -> Dict[str, str]:
st.write("## Input data")
english_datasets = get_datasets()
english_datasets_for_task = []
for dataset in english_datasets:
for task_category in english_datasets[dataset]:
if task_category == inputs["nlp_task"]:
english_datasets_for_task.append(dataset)
continue
inputs["dataset"] = st.selectbox(
"Which one?", tuple(english_datasets_for_task)
)
configs = get_dataset_config_names(inputs["dataset"])
inputs["subset"] = st.selectbox("Which subset?", list(configs))
data_info_dict = get_dataset_infos_dict(
inputs["dataset"], inputs["subset"])
assert data_info_dict.splits is not None
if 'train' in list(data_info_dict.splits.keys()):
train_index = list(data_info_dict.splits.keys()).index('train')
else:
train_index = 0
inputs["train"] = st.selectbox("Which split for training?", list(
data_info_dict.splits.keys()), index=train_index)
if 'validation' in list(data_info_dict.splits.keys()):
validation_index = list(
data_info_dict.splits.keys()).index('validation')
else:
validation_index = len(list(data_info_dict.splits.keys()))-1
inputs["validation"] = st.selectbox("Which split for validation?", list(
data_info_dict.splits.keys()), index=validation_index)
assert data_info_dict.features is not None
feature_index = 0
if inputs["nlp_task"] == 'translation':
if 'translation' in list(data_info_dict.features.keys()):
feature_index = list(
data_info_dict.features.keys()).index('translation')
inputs["feature"] = st.selectbox(
"Which data feature?", list(data_info_dict.features.keys()), feature_index)
if inputs["feature"] == 'translation':
inputs["source_language"] = st.selectbox(
"Which language for source?", list(data_info_dict.features['translation'].languages))
inputs["target_language"] = st.selectbox(
"Which language for target?", list(data_info_dict.features['translation'].languages))
return inputs
def show_preprocessing_component(inputs: Dict[str, str]) -> Dict[str, str]:
st.write("## Preprocessing")
inputs["block_size"] = st.number_input(
"The length of each block (i.e. context size)", 1, None, 128)
if inputs["task"] == "MaskedLM":
inputs["mlm_probability"] = st.number_input(
"The probability with which to (randomly) mask tokens in the input", 0.0, 1.00, 0.15)
inputs["whole_word_masking"] = st.checkbox(
"Use whole word masking")
return inputs
def show_training_comoponent(inputs: Dict[str, str]) -> Dict[str, str]:
st.write("## Training")
# inputs['with_tracker'] = st.selectbox(
# "Loggers to monitor the training ", ["none", "all", "tensorboard", "wandb", "comet_ml"])
inputs["seed"] = st.number_input(
"Seed", 1, None, 4)
if inputs['api'] == 'Accelerate':
optimizer_dict_to_use = OPTIMIZERS_ACCELERATE
else:
optimizer_dict_to_use = OPTIMIZERS_TRAINER
inputs["optimizer"] = st.selectbox(
"Optimizer", list(optimizer_dict_to_use.keys()))
default_lr = optimizer_dict_to_use[inputs["optimizer"]]
inputs["lr"] = st.number_input(
"Learning rate", 0.000, None, default_lr, format="%f"
)
inputs["use_weight_decay"] = st.checkbox("Use weight decay")
if inputs["use_weight_decay"]:
inputs["weight_decay"] = st.number_input(
"Weight decay", 0.000, None, 0.01, format="%f"
)
inputs["gradient_accumulation_steps"] = st.number_input(
"Gradient Accumulation Steps", 1, None, 8)
inputs['lr_scheduler_type'] = st.selectbox(
"The scheduler type to use", ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"])
inputs['num_warmup_steps'] = st.number_input(
"Num warmup steps", 0, None, 0)
inputs["batch_size"] = st.number_input("Batch size", 1, None, 32)
inputs["num_epochs"] = st.number_input("Epochs", 1, None, 3)
return inputs
def show_datset_view_component(inputs: Dict[str, str]) -> Dict[str, str]:
data_info_dict = get_dataset_infos_dict(
inputs["dataset"], inputs["subset"])
st.write(f'## Dataset view: {inputs["dataset"]}/{inputs["subset"]}')
st.markdown(
"*Homepage*: "
+ data_info_dict.homepage
+ "\n\n*Dataset*: https://github.com/huggingface/datasets/blob/master/datasets/%s/%s.py"
% (inputs["dataset"], inputs["dataset"])
)
s = []
s .append('dataset' + "=" + inputs["dataset"])
s.append('config' + "=" + inputs["subset"])
st.markdown(
"*Permalink*: https://huggingface.co/datasets/viewer/?"
+ "&".join(s)
)
# https://github.com/huggingface/datasets-viewer/blob/master/run.py#L282
st.write(f'{data_info_dict.description}')
st.write(render_features(data_info_dict.features))
# TODO make a conditional if the size of the data is too big, switch to streaming mode
# TODO cashe this part of the code
# selected_dataset = load_dataset(
# inputs["dataset"], inputs["subset"], split=inputs["train"], streaming=True)
# print(selected_dataset)
# print(next(iter(selected_dataset)))
return inputs
def show_code_component(inputs: Dict[str, str]) -> Dict[str, str]:
# Generate code and notebook based on template.py.jinja file in the template dir.
env = Environment(
loader=FileSystemLoader(inputs['template_dir']), trim_blocks=True, lstrip_blocks=True,
)
template = env.get_template(f'task_templates/{inputs["nlp_task"]}.py.jinja')
code = template.render(header=utils.code_header, notebook=False, **inputs)
notebook_code = template.render(
header=utils.notebook_header, notebook=True, **inputs)
notebook = utils.to_notebook(notebook_code)
st.write(f'## Code view: {inputs["api"]}')
st.write("") # add vertical space
col1, col2 = st.beta_columns(2)
with col1:
utils.download_button(code, "generated-code.py", "π Download (.py)")
with col2:
utils.download_button(
notebook, "generated-notebook.ipynb", "π Download (.ipynb)")
colab_error = st.empty()
# Display code.
st.code(code)
return inputs
|