File size: 8,322 Bytes
3f13a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import collections
import os
from typing import Dict

import streamlit as st
from datasets import get_dataset_config_names
from jinja2 import Environment, FileSystemLoader

import utils
from configuration import OPTIMIZERS_ACCELERATE, OPTIMIZERS_TRAINER, TASKS, TASKS_TO_PIPELINE_TAG
from utils import (get_dataset_infos_dict, get_datasets, get_model_to_model_id,
                   render_features)


def show_API_component(inputs: Dict[str, str]) -> Dict[str, str]:
    template_dict = collections.defaultdict()
    template_dirs = [
        f for f in os.scandir("templates") if f.is_dir() and f.name != "example"
    ]
    template_dirs = sorted(template_dirs, key=lambda e: e.name)
    for template_dir in template_dirs:
        template_dict[template_dir.name] = template_dir.path
    st.write("## API")
    inputs['api'] = st.selectbox(

        "Which Hugging Face API do you want to use?", list(template_dict.keys())
    )
    inputs['template_dir'] = template_dict.get(inputs['api'])
    return inputs


def show_model_component(inputs: Dict[str, str]) -> Dict[str, str]:

    model_info = get_model_to_model_id()
    models = model_info['model_to_model_id']
    models_pipeline = model_info["model_to_pipeline_tag"]
    st.write("## Model")
    models_for_task = []
    for model in models:
        if (models_pipeline[model] == inputs["nlp_task"]):
            models_for_task.append(model)
    model = st.selectbox("Which model?", list(models_for_task))
    inputs["model_checkpoint"] = models.get(model)
    inputs["pretrained"] = st.checkbox("Use pre-trained model")
    return inputs


def show_task_component(inputs: Dict[str, str]) -> Dict[str, str]:
    st.write("## Task")
    task = st.selectbox("Which task?", TASKS)
    inputs["task"] = task
    inputs["nlp_task"] = st.selectbox(
        "Which NLP task?", TASKS_TO_PIPELINE_TAG[task])
    return inputs


def show_input_data_component(inputs: Dict[str, str]) -> Dict[str, str]:
    st.write("## Input data")
    english_datasets = get_datasets()
    english_datasets_for_task = []

    for dataset in english_datasets:
        for task_category in english_datasets[dataset]:
            if task_category == inputs["nlp_task"]:
                english_datasets_for_task.append(dataset)
                continue

    inputs["dataset"] = st.selectbox(
        "Which one?", tuple(english_datasets_for_task)
    )

    configs = get_dataset_config_names(inputs["dataset"])
    inputs["subset"] = st.selectbox("Which subset?", list(configs))

    data_info_dict = get_dataset_infos_dict(
        inputs["dataset"], inputs["subset"])

    assert data_info_dict.splits is not None
    if 'train' in list(data_info_dict.splits.keys()):
        train_index = list(data_info_dict.splits.keys()).index('train')
    else:
        train_index = 0

    inputs["train"] = st.selectbox("Which split for training?", list(
        data_info_dict.splits.keys()), index=train_index)

    if 'validation' in list(data_info_dict.splits.keys()):
        validation_index = list(
            data_info_dict.splits.keys()).index('validation')
    else:
        validation_index = len(list(data_info_dict.splits.keys()))-1

    inputs["validation"] = st.selectbox("Which split for validation?", list(
        data_info_dict.splits.keys()), index=validation_index)

    assert data_info_dict.features is not None
    feature_index = 0
    if inputs["nlp_task"] == 'translation':
        if 'translation' in list(data_info_dict.features.keys()):
            feature_index = list(
                data_info_dict.features.keys()).index('translation')

    inputs["feature"] = st.selectbox(
        "Which data feature?", list(data_info_dict.features.keys()), feature_index)

    if inputs["feature"] == 'translation':
        inputs["source_language"] = st.selectbox(
            "Which language for source?", list(data_info_dict.features['translation'].languages))
        inputs["target_language"] = st.selectbox(
            "Which language for target?", list(data_info_dict.features['translation'].languages))

    return inputs


def show_preprocessing_component(inputs: Dict[str, str]) -> Dict[str, str]:
    st.write("## Preprocessing")
    inputs["block_size"] = st.number_input(
        "The length of each block (i.e. context size)", 1, None, 128)

    if inputs["task"] == "MaskedLM":
        inputs["mlm_probability"] = st.number_input(
            "The probability with which to (randomly) mask tokens in the input", 0.0, 1.00, 0.15)
        inputs["whole_word_masking"] = st.checkbox(
            "Use whole word masking")
    return inputs


def show_training_comoponent(inputs: Dict[str, str]) -> Dict[str, str]:
    st.write("## Training")

    # inputs['with_tracker'] = st.selectbox(
    #     "Loggers to monitor the training ", ["none", "all", "tensorboard", "wandb", "comet_ml"])
    inputs["seed"] = st.number_input(
        "Seed", 1, None, 4)
    
    if inputs['api'] == 'Accelerate':
        optimizer_dict_to_use = OPTIMIZERS_ACCELERATE
    else:
        optimizer_dict_to_use = OPTIMIZERS_TRAINER
        
    inputs["optimizer"] = st.selectbox(
            "Optimizer", list(optimizer_dict_to_use.keys()))
    default_lr = optimizer_dict_to_use[inputs["optimizer"]]
    inputs["lr"] = st.number_input(
        "Learning rate", 0.000, None, default_lr, format="%f"
    )
    inputs["use_weight_decay"] = st.checkbox("Use weight decay")
    if inputs["use_weight_decay"]:
        inputs["weight_decay"] = st.number_input(
            "Weight decay", 0.000, None, 0.01, format="%f"
        )

    inputs["gradient_accumulation_steps"] = st.number_input(
        "Gradient Accumulation Steps", 1, None, 8)

    inputs['lr_scheduler_type'] = st.selectbox(
        "The scheduler type to use", ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"])
    inputs['num_warmup_steps'] = st.number_input(
        "Num warmup steps", 0, None, 0)
    inputs["batch_size"] = st.number_input("Batch size", 1, None, 32)
    inputs["num_epochs"] = st.number_input("Epochs", 1, None, 3)
    return inputs


def show_datset_view_component(inputs: Dict[str, str]) -> Dict[str, str]:
    data_info_dict = get_dataset_infos_dict(
        inputs["dataset"], inputs["subset"])
    st.write(f'## Dataset view: {inputs["dataset"]}/{inputs["subset"]}')
    st.markdown(
        "*Homepage*: "
        + data_info_dict.homepage
        + "\n\n*Dataset*: https://github.com/huggingface/datasets/blob/master/datasets/%s/%s.py"
        % (inputs["dataset"], inputs["dataset"])
    )
    s = []
    s .append('dataset' + "=" + inputs["dataset"])
    s.append('config' + "=" + inputs["subset"])
    st.markdown(
        "*Permalink*: https://huggingface.co/datasets/viewer/?"
        + "&".join(s)
    )
    # https://github.com/huggingface/datasets-viewer/blob/master/run.py#L282
    st.write(f'{data_info_dict.description}')
    st.write(render_features(data_info_dict.features))
    # TODO make a conditional if the size of the data is too big, switch to streaming mode
    # TODO cashe this part of the code
    # selected_dataset = load_dataset(
    #     inputs["dataset"], inputs["subset"], split=inputs["train"], streaming=True)
    # print(selected_dataset)
    # print(next(iter(selected_dataset)))
    return inputs

def show_code_component(inputs: Dict[str, str]) -> Dict[str, str]:
    # Generate code and notebook based on template.py.jinja file in the template dir.
    env = Environment(
        loader=FileSystemLoader(inputs['template_dir']), trim_blocks=True, lstrip_blocks=True,
    )

    template = env.get_template(f'task_templates/{inputs["nlp_task"]}.py.jinja')
    code = template.render(header=utils.code_header, notebook=False, **inputs)
    notebook_code = template.render(
        header=utils.notebook_header, notebook=True, **inputs)

    notebook = utils.to_notebook(notebook_code)

    st.write(f'## Code view: {inputs["api"]}')
    st.write("")  # add vertical space
    col1, col2 = st.beta_columns(2)
    with col1:
        utils.download_button(code, "generated-code.py", "🐍 Download (.py)")
    with col2:
        utils.download_button(
            notebook, "generated-notebook.ipynb", "πŸ““ Download (.ipynb)")
    colab_error = st.empty()
    # Display code.
    st.code(code)
    return inputs