Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	update qa sources
Browse files- .DS_Store +0 -0
- local_files/.DS_Store +0 -0
- pages/{3_qa_sources.py → 3_qa_sources_v1.py} +0 -0
- pages/3_qa_sources_v2.py +437 -0
    	
        .DS_Store
    ADDED
    
    | Binary file (8.2 kB). View file | 
|  | 
    	
        local_files/.DS_Store
    CHANGED
    
    | Binary files a/local_files/.DS_Store and b/local_files/.DS_Store differ | 
|  | 
    	
        pages/{3_qa_sources.py → 3_qa_sources_v1.py}
    RENAMED
    
    | 
            File without changes
         | 
    	
        pages/3_qa_sources_v2.py
    ADDED
    
    | @@ -0,0 +1,437 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # set the environment variables needed for openai package to know to reach out to azure
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import datetime
         | 
| 4 | 
            +
            import faiss
         | 
| 5 | 
            +
            import streamlit as st
         | 
| 6 | 
            +
            import feedparser
         | 
| 7 | 
            +
            import urllib
         | 
| 8 | 
            +
            import cloudpickle as cp
         | 
| 9 | 
            +
            import pickle
         | 
| 10 | 
            +
            from urllib.request import urlopen
         | 
| 11 | 
            +
            from summa import summarizer
         | 
| 12 | 
            +
            import numpy as np
         | 
| 13 | 
            +
            import matplotlib.pyplot as plt
         | 
| 14 | 
            +
            import requests
         | 
| 15 | 
            +
            import json
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from langchain.document_loaders import TextLoader
         | 
| 18 | 
            +
            from langchain.indexes import VectorstoreIndexCreator
         | 
| 19 | 
            +
            from langchain_openai import AzureOpenAIEmbeddings
         | 
| 20 | 
            +
            from langchain.llms import OpenAI
         | 
| 21 | 
            +
            from langchain_openai import AzureChatOpenAI
         | 
| 22 | 
            +
            from langchain import hub
         | 
| 23 | 
            +
            from langchain_core.prompts import PromptTemplate
         | 
| 24 | 
            +
            from langchain_core.runnables import RunnablePassthrough
         | 
| 25 | 
            +
            from langchain_core.output_parsers import StrOutputParser
         | 
| 26 | 
            +
            from langchain_core.runnables import RunnableParallel
         | 
| 27 | 
            +
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 28 | 
            +
            from langchain_community.vectorstores import Chroma
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            os.environ["OPENAI_API_TYPE"] = "azure"
         | 
| 31 | 
            +
            os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
         | 
| 32 | 
            +
            os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
         | 
| 33 | 
            +
            os.environ["OPENAI_API_VERSION"] = "2023-05-15"
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            embeddings = AzureOpenAIEmbeddings(
         | 
| 36 | 
            +
                deployment="embedding",
         | 
| 37 | 
            +
                model="text-embedding-ada-002",
         | 
| 38 | 
            +
                azure_endpoint=st.secrets["endpoint1"],
         | 
| 39 | 
            +
            )
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            llm = AzureChatOpenAI(
         | 
| 42 | 
            +
                    deployment_name="gpt4_small",
         | 
| 43 | 
            +
                    openai_api_version="2023-12-01-preview",
         | 
| 44 | 
            +
                    azure_endpoint=st.secrets["endpoint2"],
         | 
| 45 | 
            +
                    openai_api_key=st.secrets["key2"],
         | 
| 46 | 
            +
                    openai_api_type="azure",
         | 
| 47 | 
            +
                    temperature=0.
         | 
| 48 | 
            +
                )
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            @st.cache_data
         | 
| 52 | 
            +
            def get_feeds_data(url):
         | 
| 53 | 
            +
                # data = cp.load(urlopen(url))
         | 
| 54 | 
            +
                with open(url, "rb") as fp:
         | 
| 55 | 
            +
                    data = pickle.load(fp)
         | 
| 56 | 
            +
                st.sidebar.success("Loaded data")
         | 
| 57 | 
            +
                return data
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            # feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
         | 
| 60 | 
            +
            # embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
         | 
| 61 | 
            +
            dateval = "27-Jun-2023"
         | 
| 62 | 
            +
            feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
         | 
| 63 | 
            +
            embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
         | 
| 64 | 
            +
            gal_feeds = get_feeds_data(feeds_link)
         | 
| 65 | 
            +
            arxiv_ada_embeddings = get_feeds_data(embed_link)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            @st.cache_data
         | 
| 68 | 
            +
            def get_embedding_data(url):
         | 
| 69 | 
            +
                # data = cp.load(urlopen(url))
         | 
| 70 | 
            +
                with open(url, "rb") as fp:
         | 
| 71 | 
            +
                    data = pickle.load(fp)
         | 
| 72 | 
            +
                st.sidebar.success("Fetched data from API!")
         | 
| 73 | 
            +
                return data
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            # url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
         | 
| 76 | 
            +
            url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
         | 
| 77 | 
            +
            e2d = get_embedding_data(url)
         | 
| 78 | 
            +
            # e2d, _, _, _, _ = get_embedding_data(url)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            ctr = -1
         | 
| 81 | 
            +
            num_chunks = len(gal_feeds)
         | 
| 82 | 
            +
            all_text, all_titles, all_arxivid, all_links, all_authors = [], [], [], [], []
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            for nc in range(num_chunks):
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                for i in range(len(gal_feeds[nc].entries)):
         | 
| 87 | 
            +
                    text = gal_feeds[nc].entries[i].summary
         | 
| 88 | 
            +
                    text = text.replace('\n', ' ')
         | 
| 89 | 
            +
                    text = text.replace('\\', '')
         | 
| 90 | 
            +
                    all_text.append(text)
         | 
| 91 | 
            +
                    all_titles.append(gal_feeds[nc].entries[i].title)
         | 
| 92 | 
            +
                    all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
         | 
| 93 | 
            +
                    all_links.append(gal_feeds[nc].entries[i].links[1].href)
         | 
| 94 | 
            +
                    all_authors.append(gal_feeds[nc].entries[i].authors)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            d = arxiv_ada_embeddings.shape[1]                           # dimension
         | 
| 97 | 
            +
            nb = arxiv_ada_embeddings.shape[0]                      # database size
         | 
| 98 | 
            +
            xb = arxiv_ada_embeddings.astype('float32')
         | 
| 99 | 
            +
            index = faiss.IndexFlatL2(d)
         | 
| 100 | 
            +
            index.add(xb)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            def run_simple_query(search_query = 'all:sed+fitting', max_results = 10, start = 0, sort_by = 'lastUpdatedDate', sort_order = 'descending'):
         | 
| 103 | 
            +
                """
         | 
| 104 | 
            +
                    Query ArXiv to return search results for a particular query
         | 
| 105 | 
            +
                    Parameters
         | 
| 106 | 
            +
                    ----------
         | 
| 107 | 
            +
                    query: str
         | 
| 108 | 
            +
                        query term. use prefixes ti, au, abs, co, jr, cat, m, id, all as applicable.
         | 
| 109 | 
            +
                    max_results: int, default = 10
         | 
| 110 | 
            +
                        number of results to return. numbers > 1000 generally lead to timeouts
         | 
| 111 | 
            +
                    start: int, default = 0
         | 
| 112 | 
            +
                        start index for results reported. use this if you're interested in running chunks.
         | 
| 113 | 
            +
                    Returns
         | 
| 114 | 
            +
                    -------
         | 
| 115 | 
            +
                    feed: dict
         | 
| 116 | 
            +
                        object containing requested results parsed with feedparser
         | 
| 117 | 
            +
                    Notes
         | 
| 118 | 
            +
                    -----
         | 
| 119 | 
            +
                        add functionality for chunk parsing, as well as storage and retreival
         | 
| 120 | 
            +
                    """
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                base_url = 'http://export.arxiv.org/api/query?';
         | 
| 123 | 
            +
                query = 'search_query=%s&start=%i&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query,
         | 
| 124 | 
            +
                                                                 start,
         | 
| 125 | 
            +
                                                                 max_results,sort_by,sort_order)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                response = urllib.request.urlopen(base_url+query).read()
         | 
| 128 | 
            +
                feed = feedparser.parse(response)
         | 
| 129 | 
            +
                return feed
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            def find_papers_by_author(auth_name):
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                doc_ids = []
         | 
| 134 | 
            +
                for doc_id in range(len(all_authors)):
         | 
| 135 | 
            +
                    for auth_id in range(len(all_authors[doc_id])):
         | 
| 136 | 
            +
                        if auth_name.lower() in all_authors[doc_id][auth_id]['name'].lower():
         | 
| 137 | 
            +
                            print('Doc ID: ',doc_id, ' | arXiv: ', all_arxivid[doc_id], '| ', all_titles[doc_id],' | Author entry: ', all_authors[doc_id][auth_id]['name'])
         | 
| 138 | 
            +
                            doc_ids.append(doc_id)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                return doc_ids
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            def faiss_based_indices(input_vector, nindex=10):
         | 
| 143 | 
            +
                xq = input_vector.reshape(-1,1).T.astype('float32')
         | 
| 144 | 
            +
                D, I = index.search(xq, nindex)
         | 
| 145 | 
            +
                return I[0], D[0]
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            def list_similar_papers_v2(model_data,
         | 
| 148 | 
            +
                                    doc_id = [], input_type = 'doc_id',
         | 
| 149 | 
            +
                                    show_authors = False, show_summary = False,
         | 
| 150 | 
            +
                                    return_n = 10):
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                arxiv_ada_embeddings, embeddings, all_titles, all_abstracts, all_authors = model_data
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                if input_type == 'doc_id':
         | 
| 155 | 
            +
                    print('Doc ID: ',doc_id,', title: ',all_titles[doc_id])
         | 
| 156 | 
            +
            #         inferred_vector = model.infer_vector(train_corpus[doc_id].words)
         | 
| 157 | 
            +
                    inferred_vector = arxiv_ada_embeddings[doc_id,0:]
         | 
| 158 | 
            +
                    start_range = 1
         | 
| 159 | 
            +
                elif input_type == 'arxiv_id':
         | 
| 160 | 
            +
                    print('ArXiv id: ',doc_id)
         | 
| 161 | 
            +
                    arxiv_query_feed = run_simple_query(search_query='id:'+str(doc_id))
         | 
| 162 | 
            +
                    if len(arxiv_query_feed.entries) == 0:
         | 
| 163 | 
            +
                        print('error: arxiv id not found.')
         | 
| 164 | 
            +
                        return
         | 
| 165 | 
            +
                    else:
         | 
| 166 | 
            +
                        print('Title: '+arxiv_query_feed.entries[0].title)
         | 
| 167 | 
            +
                        inferred_vector = np.array(embeddings.embed_query(arxiv_query_feed.entries[0].summary))
         | 
| 168 | 
            +
                    start_range = 0
         | 
| 169 | 
            +
                elif input_type == 'keywords':
         | 
| 170 | 
            +
                    inferred_vector = np.array(embeddings.embed_query(doc_id))
         | 
| 171 | 
            +
                    start_range = 0
         | 
| 172 | 
            +
                else:
         | 
| 173 | 
            +
                    print('unrecognized input type.')
         | 
| 174 | 
            +
                    return
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                sims, dists = faiss_based_indices(inferred_vector, return_n+2)
         | 
| 177 | 
            +
                textstr = ''
         | 
| 178 | 
            +
                abstracts_relevant = []
         | 
| 179 | 
            +
                fhdrs = []
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                for i in range(start_range,start_range+return_n):
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    abstracts_relevant.append(all_text[sims[i]])
         | 
| 184 | 
            +
                    fhdr = all_authors[sims[i]][0]['name'].split()[-1] + all_arxivid[sims[i]][0:2] +'_'+ all_arxivid[sims[i]]
         | 
| 185 | 
            +
                    fhdrs.append(fhdr)
         | 
| 186 | 
            +
                    textstr = textstr + str(i+1)+'. **'+ all_titles[sims[i]] +'** (Distance: %.2f' %dists[i]+')   \n'
         | 
| 187 | 
            +
                    textstr = textstr + '**ArXiv:** ['+all_arxivid[sims[i]]+'](https://arxiv.org/abs/'+all_arxivid[sims[i]]+')  \n'
         | 
| 188 | 
            +
                    if show_authors == True:
         | 
| 189 | 
            +
                        textstr = textstr + '**Authors:**  '
         | 
| 190 | 
            +
                        temp = all_authors[sims[i]]
         | 
| 191 | 
            +
                        for ak in range(len(temp)):
         | 
| 192 | 
            +
                            if ak < len(temp)-1:
         | 
| 193 | 
            +
                                textstr = textstr + temp[ak].name + ', '
         | 
| 194 | 
            +
                            else:
         | 
| 195 | 
            +
                                textstr = textstr + temp[ak].name + '   \n'
         | 
| 196 | 
            +
                    if show_summary == True:
         | 
| 197 | 
            +
                        textstr = textstr + '**Summary:**  '
         | 
| 198 | 
            +
                        text = all_text[sims[i]]
         | 
| 199 | 
            +
                        text = text.replace('\n', ' ')
         | 
| 200 | 
            +
                        textstr = textstr + summarizer.summarize(text) + '  \n'
         | 
| 201 | 
            +
                    if show_authors == True or show_summary == True:
         | 
| 202 | 
            +
                        textstr = textstr + ' '
         | 
| 203 | 
            +
                    textstr = textstr + '  \n'
         | 
| 204 | 
            +
                return textstr, abstracts_relevant, fhdrs, sims
         | 
| 205 | 
            +
             | 
| 206 | 
            +
             | 
| 207 | 
            +
            def generate_chat_completion(messages, model="gpt-4", temperature=1, max_tokens=None):
         | 
| 208 | 
            +
                headers = {
         | 
| 209 | 
            +
                    "Content-Type": "application/json",
         | 
| 210 | 
            +
                    "Authorization": f"Bearer {openai.api_key}",
         | 
| 211 | 
            +
                }
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                data = {
         | 
| 214 | 
            +
                    "model": model,
         | 
| 215 | 
            +
                    "messages": messages,
         | 
| 216 | 
            +
                    "temperature": temperature,
         | 
| 217 | 
            +
                }
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                if max_tokens is not None:
         | 
| 220 | 
            +
                    data["max_tokens"] = max_tokens
         | 
| 221 | 
            +
                response = requests.post(API_ENDPOINT, headers=headers, data=json.dumps(data))
         | 
| 222 | 
            +
                if response.status_code == 200:
         | 
| 223 | 
            +
                    return response.json()["choices"][0]["message"]["content"]
         | 
| 224 | 
            +
                else:
         | 
| 225 | 
            +
                    raise Exception(f"Error {response.status_code}: {response.text}")
         | 
| 226 | 
            +
             | 
| 227 | 
            +
            model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
         | 
| 228 | 
            +
             | 
| 229 | 
            +
            def format_docs(docs):
         | 
| 230 | 
            +
                return "\n\n".join(doc.page_content for doc in docs)
         | 
| 231 | 
            +
             | 
| 232 | 
            +
            def get_textstr(i, show_authors=False, show_summary=False):
         | 
| 233 | 
            +
                textstr = ''
         | 
| 234 | 
            +
                textstr = '**'+ all_titles[i] +'**   \n'
         | 
| 235 | 
            +
                textstr = textstr + '**ArXiv:** ['+all_arxivid[i]+'](https://arxiv.org/abs/'+all_arxivid[i]+')  \n'
         | 
| 236 | 
            +
                if show_authors == True:
         | 
| 237 | 
            +
                    textstr = textstr + '**Authors:**  '
         | 
| 238 | 
            +
                    temp = all_authors[i]
         | 
| 239 | 
            +
                    for ak in range(len(temp)):
         | 
| 240 | 
            +
                        if ak < len(temp)-1:
         | 
| 241 | 
            +
                            textstr = textstr + temp[ak].name + ', '
         | 
| 242 | 
            +
                        else:
         | 
| 243 | 
            +
                            textstr = textstr + temp[ak].name + '   \n'
         | 
| 244 | 
            +
                if show_summary == True:
         | 
| 245 | 
            +
                    textstr = textstr + '**Summary:**  '
         | 
| 246 | 
            +
                    text = all_text[i]
         | 
| 247 | 
            +
                    text = text.replace('\n', ' ')
         | 
| 248 | 
            +
                    textstr = textstr + summarizer.summarize(text) + '  \n'
         | 
| 249 | 
            +
                if show_authors == True or show_summary == True:
         | 
| 250 | 
            +
                    textstr = textstr + ' '
         | 
| 251 | 
            +
                textstr = textstr + '  \n'
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                return textstr
         | 
| 254 | 
            +
             | 
| 255 | 
            +
             | 
| 256 | 
            +
            def run_rag(query, return_n = 10, show_authors = True, show_summary = True):
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
         | 
| 259 | 
            +
                                              doc_id = query,
         | 
| 260 | 
            +
                                              input_type='keywords',
         | 
| 261 | 
            +
                                              show_authors = show_authors, show_summary = show_summary,
         | 
| 262 | 
            +
                                              return_n = return_n)
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                temp_abst = ''
         | 
| 265 | 
            +
                loaders = []
         | 
| 266 | 
            +
                for i in range(len(absts)):
         | 
| 267 | 
            +
                    temp_abst = absts[i]
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    try:
         | 
| 270 | 
            +
                        text_file = open("absts/"+fhdrs[i]+".txt", "w")
         | 
| 271 | 
            +
                    except:
         | 
| 272 | 
            +
                        os.mkdir('absts')
         | 
| 273 | 
            +
                        text_file = open("absts/"+fhdrs[i]+".txt", "w")
         | 
| 274 | 
            +
                    n = text_file.write(temp_abst)
         | 
| 275 | 
            +
                    text_file.close()
         | 
| 276 | 
            +
                    loader = TextLoader("absts/"+fhdrs[i]+".txt")
         | 
| 277 | 
            +
                    loaders.append(loader)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
         | 
| 280 | 
            +
                splits = text_splitter.split_documents([loader.load()[0] for loader in loaders])
         | 
| 281 | 
            +
                vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
         | 
| 282 | 
            +
                retriever = vectorstore.as_retriever()
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                template = """You are an assistant with expertise in astrophysics for question-answering tasks.
         | 
| 285 | 
            +
                Use the following pieces of retrieved context from the literature to answer the question.
         | 
| 286 | 
            +
                If you don't know the answer, just say that you don't know.
         | 
| 287 | 
            +
                Use six sentences maximum and keep the answer concise.
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                {context}
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                Question: {question}
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                Answer:"""
         | 
| 294 | 
            +
                custom_rag_prompt = PromptTemplate.from_template(template)
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                rag_chain_from_docs = (
         | 
| 297 | 
            +
                    RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
         | 
| 298 | 
            +
                    | custom_rag_prompt
         | 
| 299 | 
            +
                    | llm
         | 
| 300 | 
            +
                    | StrOutputParser()
         | 
| 301 | 
            +
                )
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                rag_chain_with_source = RunnableParallel(
         | 
| 304 | 
            +
                    {"context": retriever, "question": RunnablePassthrough()}
         | 
| 305 | 
            +
                ).assign(answer=rag_chain_from_docs)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                rag_answer = rag_chain_with_source.invoke(query)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                st.markdown('### User query: '+query)
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                st.markdown(rag_answer['answer'])
         | 
| 312 | 
            +
                opstr = '#### Primary sources: \n'
         | 
| 313 | 
            +
                srcnames = []
         | 
| 314 | 
            +
                for i in range(len(rag_answer['context'])):
         | 
| 315 | 
            +
                    srcnames.append(rag_answer['context'][0].metadata['source'])
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                srcnames = np.unique(srcnames)
         | 
| 318 | 
            +
                srcindices = []
         | 
| 319 | 
            +
                for i in range(len(srcnames)):
         | 
| 320 | 
            +
                    temp = srcnames[i].split('_')[1]
         | 
| 321 | 
            +
                    srcindices.append(int(srcnames[i].split('_')[0].split('/')[1]))
         | 
| 322 | 
            +
                    if int(temp[-2:]) < 40:
         | 
| 323 | 
            +
                        temp = temp[0:-2] + ' et al. 20' + temp[-2:]
         | 
| 324 | 
            +
                    else:
         | 
| 325 | 
            +
                        temp = temp[0:-2] + ' et al. 19' + temp[-2:]
         | 
| 326 | 
            +
                    temp = '['+temp+']('+all_links[int(srcnames[i].split('_')[0].split('/')[1])]+')'
         | 
| 327 | 
            +
                    st.markdown(temp)
         | 
| 328 | 
            +
                simids = np.array(srcindices)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                fig = plt.figure(figsize=(9,9))
         | 
| 331 | 
            +
                plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
         | 
| 332 | 
            +
                plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
         | 
| 333 | 
            +
                plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
         | 
| 334 | 
            +
                st.pyplot(fig)
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                st.markdown('\n #### List of relevant papers:')
         | 
| 337 | 
            +
                st.markdown(sims)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                return rag_answer
         | 
| 340 | 
            +
             | 
| 341 | 
            +
            def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources = True):
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                show_authors = True
         | 
| 344 | 
            +
                show_summary = True
         | 
| 345 | 
            +
                sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
         | 
| 346 | 
            +
                                              doc_id = query,
         | 
| 347 | 
            +
                                              input_type='keywords',
         | 
| 348 | 
            +
                                              show_authors = show_authors, show_summary = show_summary,
         | 
| 349 | 
            +
                                              return_n = return_n)
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                temp_abst = ''
         | 
| 352 | 
            +
                loaders = []
         | 
| 353 | 
            +
                for i in range(len(absts)):
         | 
| 354 | 
            +
                    temp_abst = absts[i]
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    try:
         | 
| 357 | 
            +
                        text_file = open("absts/"+fhdrs[i]+".txt", "w")
         | 
| 358 | 
            +
                    except:
         | 
| 359 | 
            +
                        os.mkdir('absts')
         | 
| 360 | 
            +
                        text_file = open("absts/"+fhdrs[i]+".txt", "w")
         | 
| 361 | 
            +
                    n = text_file.write(temp_abst)
         | 
| 362 | 
            +
                    text_file.close()
         | 
| 363 | 
            +
                    loader = TextLoader("absts/"+fhdrs[i]+".txt")
         | 
| 364 | 
            +
                    loaders.append(loader)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                lc_index = VectorstoreIndexCreator().from_loaders(loaders)
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                st.markdown('### User query: '+query)
         | 
| 369 | 
            +
                if show_pure_answer == True:
         | 
| 370 | 
            +
                    st.markdown('pure answer:')
         | 
| 371 | 
            +
                    st.markdown(lc_index.query(query))
         | 
| 372 | 
            +
                    st.markdown(' ')
         | 
| 373 | 
            +
                st.markdown('#### context-based answer from sources:')
         | 
| 374 | 
            +
                output = lc_index.query_with_sources(query + ' Let\'s work this out in a step by step way to be sure we have the right answer.' ) #zero-shot in-context prompting from Zhou+22, Kojima+22
         | 
| 375 | 
            +
                st.markdown(output['answer'])
         | 
| 376 | 
            +
                opstr = '#### Primary sources: \n'
         | 
| 377 | 
            +
                st.markdown(opstr)
         | 
| 378 | 
            +
             | 
| 379 | 
            +
            #     opstr = ''
         | 
| 380 | 
            +
            #     for i in range(len(output['sources'])):
         | 
| 381 | 
            +
            #         opstr = opstr +'\n'+ output['sources'][i]
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                textstr = ''
         | 
| 384 | 
            +
                ng = len(output['sources'].split())
         | 
| 385 | 
            +
                abs_indices = []
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                for i in range(ng):
         | 
| 388 | 
            +
                    if i == (ng-1):
         | 
| 389 | 
            +
                        tempid = output['sources'].split()[i].split('_')[1][0:-4]
         | 
| 390 | 
            +
                    else:
         | 
| 391 | 
            +
                        tempid = output['sources'].split()[i].split('_')[1][0:-5]
         | 
| 392 | 
            +
                    try:
         | 
| 393 | 
            +
                        abs_index = all_arxivid.index(tempid)
         | 
| 394 | 
            +
                        abs_indices.append(abs_index)
         | 
| 395 | 
            +
                        textstr = textstr + str(i+1)+'. **'+ all_titles[abs_index] +'   \n'
         | 
| 396 | 
            +
                        textstr = textstr + '**ArXiv:** ['+all_arxivid[abs_index]+'](https://arxiv.org/abs/'+all_arxivid[abs_index]+')  \n'
         | 
| 397 | 
            +
                        textstr = textstr + '**Authors:**  '
         | 
| 398 | 
            +
                        temp = all_authors[abs_index]
         | 
| 399 | 
            +
                        for ak in range(4):
         | 
| 400 | 
            +
                            if ak < len(temp)-1:
         | 
| 401 | 
            +
                                textstr = textstr + temp[ak].name + ', '
         | 
| 402 | 
            +
                            else:
         | 
| 403 | 
            +
                                textstr = textstr + temp[ak].name + '   \n'
         | 
| 404 | 
            +
                        if len(temp) > 3:
         | 
| 405 | 
            +
                            textstr = textstr + ' et al.    \n'
         | 
| 406 | 
            +
                        textstr = textstr + '**Summary:**  '
         | 
| 407 | 
            +
                        text = all_text[abs_index]
         | 
| 408 | 
            +
                        text = text.replace('\n', ' ')
         | 
| 409 | 
            +
                        textstr = textstr + summarizer.summarize(text) + '  \n'
         | 
| 410 | 
            +
                    except:
         | 
| 411 | 
            +
                        textstr = textstr + output['sources'].split()[i]
         | 
| 412 | 
            +
                    #         opstr = opstr + '  \n ' + output['sources'].split()[i][6:-5].split('_')[0]
         | 
| 413 | 
            +
                    #     opstr = opstr + '  \n Arxiv id: ' + output['sources'].split()[i][6:-5].split('_')[1]
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    textstr = textstr + ' '
         | 
| 416 | 
            +
                    textstr = textstr + '  \n'
         | 
| 417 | 
            +
                st.markdown(textstr)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                fig = plt.figure(figsize=(9,9))
         | 
| 420 | 
            +
                plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
         | 
| 421 | 
            +
                plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
         | 
| 422 | 
            +
                plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
         | 
| 423 | 
            +
                st.pyplot(fig)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                if show_all_sources == True:
         | 
| 426 | 
            +
                    st.markdown('\n #### Other interesting papers:')
         | 
| 427 | 
            +
                    st.markdown(sims)
         | 
| 428 | 
            +
                return output
         | 
| 429 | 
            +
             | 
| 430 | 
            +
            st.title('ArXiv-based question answering')
         | 
| 431 | 
            +
            st.markdown('[Includes papers up to: `'+dateval+'`]')
         | 
| 432 | 
            +
            st.markdown('Concise answers for questions using arxiv abstracts + GPT-4. Please use sparingly because it costs me money right now. You might need to wait for a few seconds for the GPT-4 query to return an answer (check top right corner to see if it is still running).')
         | 
| 433 | 
            +
             | 
| 434 | 
            +
            query = st.text_input('Your question here:', value="What sersic index does a disk galaxy have?")
         | 
| 435 | 
            +
            return_n = st.slider('How many papers should I show?', 1, 20, 10)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
            sims = run_query(query, return_n = return_n)
         | 
