Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import streamlit as st | |
| st.set_page_config(layout="wide") | |
| openai_key = st.secrets["openai_key"] | |
| cohere_key = st.secrets['cohere_key'] | |
| import numpy as np | |
| from abc import ABC, abstractmethod | |
| from typing import List, Dict, Any, Tuple | |
| from collections import defaultdict | |
| from tqdm import tqdm | |
| import pandas as pd | |
| from datetime import datetime, date | |
| from datasets import load_dataset, load_from_disk | |
| from collections import Counter | |
| import yaml, json, requests, sys, os, time | |
| import concurrent.futures | |
| from langchain import hub | |
| from langchain_openai import ChatOpenAI as openai_llm | |
| from langchain_openai import OpenAIEmbeddings | |
| from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel | |
| from langchain_core.prompts import PromptTemplate | |
| from langchain_community.callbacks import StreamlitCallbackHandler | |
| from langchain_community.utilities import DuckDuckGoSearchAPIWrapper | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.document_loaders import TextLoader | |
| from langchain.agents import create_react_agent, Tool, AgentExecutor | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain.callbacks import FileCallbackHandler | |
| from langchain.callbacks.manager import CallbackManager | |
| from langchain.schema import Document | |
| import instructor | |
| from pydantic import BaseModel, Field | |
| from typing import List, Literal | |
| from nltk.corpus import stopwords | |
| import nltk | |
| from openai import OpenAI | |
| # import anthropic | |
| import cohere | |
| import faiss | |
| import spacy | |
| from string import punctuation | |
| import pytextrank | |
| from prompts import * | |
| ts = time.time() | |
| def load_nlp(): | |
| nlp = spacy.load("en_core_web_sm") | |
| nlp.add_pipe("textrank") | |
| try: | |
| stopwords.words('english') | |
| except: | |
| nltk.download('stopwords') | |
| stopwords.words('english') | |
| return nlp | |
| # @st.cache_resource | |
| # def load_embeddings(): | |
| # return OpenAIEmbeddings(model="text-embedding-3-small", api_key=st.secrets["openai_key"]) | |
| # | |
| # @st.cache_resource | |
| # def load_llm(): | |
| # return ChatOpenAI(temperature=0, model_name='gpt-4o-mini', openai_api_key=st.secrets["openai_key"]) | |
| st.session_state.gen_llm = openai_llm(temperature=0, | |
| model_name='gpt-4o-mini', | |
| openai_api_key = openai_key) | |
| st.session_state.consensus_client = instructor.patch(OpenAI(api_key=openai_key)) | |
| st.session_state.embed_client = OpenAI(api_key = openai_key) | |
| embed_model = "text-embedding-3-small" | |
| st.session_state.embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key) | |
| # @st.cache_data | |
| def load_arxiv_corpus(): | |
| with st.spinner('loading astro-ph corpus'): | |
| arxiv_corpus = load_from_disk('data/') | |
| arxiv_corpus.load_faiss_index('embed', 'data/astrophindex.faiss') | |
| st.toast('loaded data. time taken: %.2f sec' %(time.time()-ts)) | |
| return arxiv_corpus | |
| def get_keywords(text): | |
| result = [] | |
| pos_tag = ['PROPN', 'ADJ', 'NOUN'] | |
| if 'nlp' not in st.session_state: | |
| st.session_state.nlp = load_nlp() | |
| doc = st.session_state.nlp(text.lower()) | |
| for token in doc: | |
| if(token.text in st.session_state.nlp.Defaults.stop_words or token.text in punctuation): | |
| continue | |
| if(token.pos_ in pos_tag): | |
| result.append(token.text) | |
| return result | |
| class RetrievalSystem(): | |
| def __init__(self): | |
| self.dataset = st.session_state.arxiv_corpus | |
| self.client = OpenAI(api_key = openai_key) | |
| self.embed_model = "text-embedding-3-small" | |
| self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key) | |
| self.hyde_client = openai_llm(temperature=0.5,model_name='gpt-4o-mini', openai_api_key = openai_key) | |
| self.cohere_client = cohere.Client(cohere_key) | |
| def make_embedding(self, text): | |
| str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding | |
| return str_embed | |
| def embed_batch(self, texts: List[str]) -> List[np.ndarray]: | |
| embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data | |
| return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings] | |
| def get_query_embedding(self, query): | |
| return self.make_embedding(query) | |
| def calc_faiss(self, query_embedding, top_k = 100): | |
| # xq = query_embedding.reshape(-1,1).T.astype('float32') | |
| # D, I = self.index.search(xq, top_k) | |
| # return I[0], D[0] | |
| tmp = self.dataset.search('embed', query_embedding, k=top_k) | |
| return [tmp.indices, tmp.scores, self.dataset[tmp.indices]] | |
| def rank_and_filter(self, query, query_embedding, top_k = 10, top_k_internal = 1000, return_scores=False): | |
| self.weight_keywords = self.toggles["Keyword weighting"] | |
| self.weight_date = self.toggles["Time weighting"] | |
| self.weight_citation = self.toggles["Citation weighting"] | |
| topk_indices, similarities, small_corpus = self.calc_faiss(np.array(query_embedding), top_k = top_k_internal) | |
| similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better) | |
| if self.weight_keywords == True: | |
| query_kws = get_keywords(query) | |
| input_kws = self.query_input_keywords | |
| query_kws = query_kws + input_kws | |
| self.query_kws = query_kws | |
| sub_kws = [small_corpus['keywords'][i] for i in range(top_k_internal)] | |
| kw_weight = np.zeros((len(topk_indices),)) + 0.1 | |
| for k in query_kws: | |
| for i in (range(len(topk_indices))): | |
| for j in range(len(sub_kws[i])): | |
| if k.lower() in sub_kws[i][j].lower(): | |
| kw_weight[i] = kw_weight[i] + 0.1 | |
| # print(i, k, sub_kws[i][j]) | |
| # kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36) | |
| kw_weight = kw_weight / np.amax(kw_weight) | |
| else: | |
| kw_weight = np.ones((len(topk_indices),)) | |
| if self.weight_date == True: | |
| sub_dates = [small_corpus['date'][i] for i in range(top_k_internal)] | |
| date = datetime.now().date() | |
| date_diff = np.array([((date - i).days / 365.) for i in sub_dates]) | |
| # age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5 | |
| age_weight = (1 + np.exp(date_diff/0.7))**(-1) | |
| age_weight = age_weight / np.amax(age_weight) | |
| else: | |
| age_weight = np.ones((len(topk_indices),)) | |
| if self.weight_citation == True: | |
| # st.write('weighting by citations') | |
| sub_cites = np.array([small_corpus['cites'][i] for i in range(top_k_internal)]) | |
| temp = sub_cites.copy() | |
| temp[sub_cites > 300] = 300. | |
| cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.) | |
| cite_weight = cite_weight / np.amax(cite_weight) | |
| else: | |
| cite_weight = np.ones((len(topk_indices),)) | |
| similarities = similarities * (kw_weight) * (age_weight) * (cite_weight) | |
| filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))] | |
| top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k] | |
| top_scores = [doc[1] for doc in top_results] | |
| top_indices = [doc[0] for doc in top_results] | |
| small_df = self.dataset[top_indices] | |
| if return_scores: | |
| return {doc[0]: doc[1] for doc in top_results}, small_df | |
| # Only keep the document IDs | |
| top_results = [doc[0] for doc in top_results] | |
| return top_results, small_df | |
| def generate_doc(self, query: str): | |
| prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper | |
| that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion. | |
| Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen) | |
| messages = [("system",prompt,),("human", query),] | |
| return self.hyde_client.invoke(messages).content | |
| def generate_docs(self, query: str): | |
| docs = [] | |
| for i in range(self.generate_n): | |
| docs.append(self.generate_doc(query)) | |
| return docs | |
| def embed_docs(self, docs: List[str]): | |
| return self.embed_batch(docs) | |
| def retrieve(self, query, top_k, return_scores = False, | |
| embed_query=True, max_doclen=250, | |
| generate_n=1, temperature=0.5, | |
| rerank_top_k = 250): | |
| if max_doclen * generate_n > 8191: | |
| raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.") | |
| query_embedding = self.get_query_embedding(query) | |
| if self.hyde == True: | |
| self.max_doclen = max_doclen | |
| self.generate_n = generate_n | |
| self.hyde_client.temperature = temperature | |
| self.embed_query = embed_query | |
| docs = self.generate_docs(query) | |
| st.expander('Abstract generated with hyde', expanded=False).write(docs) | |
| doc_embeddings = self.embed_docs(docs) | |
| if self.embed_query: | |
| query_emb = self.embed_docs([query])[0] | |
| doc_embeddings.append(query_emb) | |
| query_embedding = np.mean(np.array(doc_embeddings), axis = 0) | |
| if self.rerank == True: | |
| top_results, small_df = self.rank_and_filter(query, | |
| query_embedding, | |
| rerank_top_k, | |
| return_scores = False) | |
| try: | |
| docs_for_rerank = [small_df['abstract'][i] for i in range(rerank_top_k)] | |
| if len(docs_for_rerank) == 0: | |
| return [] | |
| reranked_results = self.cohere_client.rerank( | |
| query=query, | |
| documents=docs_for_rerank, | |
| model='rerank-english-v3.0', | |
| top_n=top_k | |
| ) | |
| final_results = [] | |
| for result in reranked_results.results: | |
| doc_id = top_results[result.index] | |
| doc_text = docs_for_rerank[result.index] | |
| score = float(result.relevance_score) | |
| final_results.append([doc_id, "", score]) | |
| final_indices = [doc[0] for doc in final_results] | |
| if return_scores: | |
| return {result[0]: result[2] for result in final_results}, self.dataset[final_indices] | |
| return [doc[0] for doc in final_results], self.dataset[final_indices] | |
| except: | |
| print('heavy load, please wait 10s and try again.') | |
| else: | |
| top_results, small_df = self.rank_and_filter(query, | |
| query_embedding, | |
| top_k, | |
| return_scores = return_scores) | |
| return top_results, small_df | |
| def return_formatted_df(self, top_results, small_df): | |
| df = pd.DataFrame(small_df) | |
| df = df.drop(columns=['embed','umap_x','umap_y','cite_bibcodes','ref_bibcodes']) | |
| links = ['https://ui.adsabs.harvard.edu/abs/'+i+'/abstract' for i in small_df['bibcode']] | |
| scores = [top_results[i] for i in top_results] | |
| df.insert(1,'ADS Link',links,True) | |
| df.insert(2,'Relevance',scores,True) | |
| df = df[['ADS Link','Relevance','date','cites','title','authors','abstract','keywords','ads_id']] | |
| return df | |
| # @st.cache_resource | |
| def load_ret_system(): | |
| with st.spinner('loading retrieval system...'): | |
| ec = RetrievalSystem() | |
| st.toast('loaded retrieval system. time taken: %.2f sec' %(time.time()-ts)) | |
| return ec | |
| st.image('local_files/pathfinder_logo.png') | |
| st.expander("What is Pathfinder / How do I use it?", expanded=False).write( | |
| """ | |
| Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context | |
| sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts. | |
| This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things. | |
| **👈 Use the sidebar to tweak the search parameters to get better results**. | |
| ### Tool summary: | |
| - Please wait while the initial data loads and compiles, this takes about a minute initially. | |
| This is not meant to be a replacement to existing tools like the | |
| [ADS](https://ui.adsabs.harvard.edu/), | |
| [arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers | |
| that otherwise might be missed during a literature survey. | |
| It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata, | |
| if you are interested in extending it please reach out! | |
| Also add: feedback form, socials, literature, contact us, copyright, collaboration, etc. | |
| The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail | |
| using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an | |
| atlas that shows well studied (forests) and currently uncharted areas (water). | |
| """ | |
| ) | |
| st.sidebar.header("Fine-tune the search") | |
| top_k = st.sidebar.slider("Number of papers to retrieve:", 1, 30, 10) | |
| extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):") | |
| keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else [] | |
| st.sidebar.subheader("Toggles") | |
| toggle_a = st.sidebar.toggle("Weight by keywords", value = False) | |
| toggle_b = st.sidebar.toggle("Weight by date", value = False) | |
| toggle_c = st.sidebar.toggle("Weight by citations", value = False) | |
| toggles = {'Keyword weighting': toggle_a, 'Time weighting': toggle_b, 'Citation weighting': toggle_c} | |
| method = st.sidebar.radio("Retrieval method:", ["Semantic search", "Semantic search + HyDE", "Semantic search + HyDE + CoHERE"], index=2) | |
| method2 = st.sidebar.radio("Generation complexity:", ["Basic RAG","ReAct Agent"]) | |
| st.session_state.top_k = top_k | |
| st.session_state.keywords = keywords | |
| st.session_state.toggles = toggles | |
| st.session_state.method = method | |
| st.session_state.method2 = method2 | |
| if (method == "Semantic search"): | |
| st.session_state.hyde = False | |
| st.session_state.cohere = False | |
| elif (method == "Semantic search + HyDE"): | |
| st.session_state.hyde = True | |
| st.session_state.cohere = False | |
| elif (method == "Semantic search + HyDE + CoHERE"): | |
| st.session_state.hyde = True | |
| st.session_state.cohere = True | |
| if method2 == "Basic RAG": | |
| st.session_state.gen_method = 'rag' | |
| elif method2 == "ReAct Agent": | |
| st.session_state.gen_method = 'agent' | |
| question_type = st.sidebar.selectbox("Prompt specialization:", ["Multi-paper (Default)", "Single-paper", "Bibliometric", "Broad but nuanced"]) | |
| st.session_state.question_type = question_type | |
| # store_output = st.sidebar.button("Save output") | |
| query = st.text_input("Ask me anything:") | |
| st.session_state.query = query | |
| st.write(query) | |
| submit_button = st.button("Run pathfinder!", key='runpfdr') | |
| search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...'] | |
| gen_text_list = ['making the LLM talk to the papers...','invoking arcane rituals...','gone to library, please wait...','is there really an answer to this...'] | |
| if 'arxiv_corpus' not in st.session_state: | |
| st.session_state.arxiv_corpus = load_arxiv_corpus() | |
| # @st.fragment() | |
| def run_query_ret(query): | |
| tr = time.time() | |
| ec = load_ret_system() | |
| ec.query_input_keywords = st.session_state.keywords | |
| ec.toggles = st.session_state.toggles | |
| ec.hyde = st.session_state.hyde | |
| ec.rerank = st.session_state.cohere | |
| rs, small_df = ec.retrieve(query, top_k = st.session_state.top_k, return_scores=True) | |
| formatted_df = ec.return_formatted_df(rs, small_df) | |
| st.toast('got top-k papers. time taken: %.2f sec' %(time.time()-tr)) | |
| return formatted_df | |
| def Library(query): | |
| papers_df = run_query_ret(st.session_state.query) | |
| op_docs = '' | |
| for i in range(len(papers_df)): | |
| op_docs = op_docs + 'Paper %.0f:' %(i+1) + papers_df['title'][i] + '\n' + papers_df['abstract'][i] + '\n\n' | |
| return op_docs | |
| def run_agent_qa(query): | |
| search = DuckDuckGoSearchAPIWrapper() | |
| tools = [ | |
| Tool( | |
| name="Library", | |
| func=Library, | |
| description="A source of information pertinent to your question. Do not answer a question without consulting this!" | |
| ), | |
| Tool( | |
| name="Search", | |
| func=search.run, | |
| description="useful for when you need to look up knowledge about common topics or current events", | |
| ) | |
| ] | |
| if 'tools' not in st.session_state: | |
| st.session_state.tools = tools | |
| prompt = hub.pull("hwchase17/react") | |
| prompt.template = react_prompt | |
| file_path = "agent_trace.txt" | |
| try: | |
| os.remove(file_path) | |
| except: | |
| pass | |
| file_handler = FileCallbackHandler(file_path) | |
| callback_manager=CallbackManager([file_handler]) | |
| tool_names = [tool.name for tool in st.session_state.tools] | |
| if 'agent' not in st.session_state: | |
| # agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names) | |
| agent = create_react_agent(llm=st.session_state.gen_llm, tools=tools, prompt=prompt) | |
| st.session_state.agent = agent | |
| if 'agent_executor' not in st.session_state: | |
| agent_executor = AgentExecutor(agent=st.session_state.agent, tools=st.session_state.tools, verbose=True, handle_parsing_errors=True, callbacks=CallbackManager([file_handler])) | |
| st.session_state.agent_executor = agent_executor | |
| answer = st.session_state.agent_executor.invoke({"input": query,}) | |
| return answer | |
| def run_rag_qa(query, papers_df): | |
| try: | |
| loaders = [] | |
| documents = [] | |
| my_bar = st.progress(0, text='adding documents to LLM context') | |
| for i, row in papers_df.iterrows(): | |
| content = f"Paper {i+1}: {row['title']}\n{row['abstract']}\n\n" | |
| metadata = {"source": row['ads_id']} | |
| doc = Document(page_content=content, metadata=metadata) | |
| documents.append(doc) | |
| my_bar.progress((i+1)/len(papers_df), text='adding documents to LLM context') | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True) | |
| splits = text_splitter.split_documents(documents) | |
| vectorstore = Chroma.from_documents(documents=splits, embedding=st.session_state.embeddings, collection_name='retdoc4') | |
| # retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6, "fetch_k": len(splits)}) | |
| retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6}) | |
| if st.session_state.question_type == 'Bibliometric': | |
| template = bibliometric_prompt | |
| elif st.session_state.question_type == 'Single-paper': | |
| template = single_paper_prompt | |
| elif st.session_state.question_type == 'Broad but nuanced': | |
| template = deep_knowledge_prompt | |
| else: | |
| template = regular_prompt | |
| prompt = PromptTemplate.from_template(template) | |
| def format_docs(docs): | |
| return "\n\n".join(doc.page_content for doc in docs) | |
| rag_chain_from_docs = ( | |
| RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"]))) | |
| | prompt | |
| | st.session_state.gen_llm | |
| | StrOutputParser() | |
| ) | |
| rag_chain_with_source = RunnableParallel( | |
| {"context": retriever, "question": RunnablePassthrough()} | |
| ).assign(answer=rag_chain_from_docs) | |
| rag_answer = rag_chain_with_source.invoke(query, ) | |
| vectorstore.delete_collection() | |
| except: | |
| st.subheader('heavy load! please wait 10 seconds and try again.') | |
| return rag_answer | |
| def guess_question_type(query: str): | |
| gen_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key) | |
| messages = [("system",question_categorization_prompt,),("human", query),] | |
| return gen_client.invoke(messages).content | |
| class OverallConsensusEvaluation(BaseModel): | |
| consensus: Literal["Strong Agreement", "Moderate Agreement", "Weak Agreement", "No Clear Consensus", "Weak Disagreement", "Moderate Disagreement", "Strong Disagreement"] = Field( | |
| ..., | |
| description="The overall level of consensus between the query and the abstracts" | |
| ) | |
| explanation: str = Field( | |
| ..., | |
| description="A detailed explanation of the consensus evaluation" | |
| ) | |
| relevance_score: float = Field( | |
| ..., | |
| description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall", | |
| ge=0, | |
| le=1 | |
| ) | |
| def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation: | |
| """ | |
| Evaluates the overall consensus of the abstracts in relation to the query in a single LLM call. | |
| """ | |
| prompt = f""" | |
| Query: {query} | |
| You will be provided with {len(abstracts)} scientific abstracts. Your task is to: | |
| 1. Evaluate the overall consensus between the query and the abstracts. | |
| 2. Provide a detailed explanation of your consensus evaluation. | |
| 3. Assign an overall relevance score from 0 to 1, where 0 means completely irrelevant and 1 means highly relevant. | |
| For the consensus evaluation, use one of the following levels: | |
| Strong Agreement, Moderate Agreement, Weak Agreement, No Clear Consensus, Weak Disagreement, Moderate Disagreement, Strong Disagreement | |
| Here are the abstracts: | |
| {' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])} | |
| Provide your evaluation in a structured format. | |
| """ | |
| response = st.session_state.consensus_client.chat.completions.create( | |
| model="gpt-4o-mini", # used to be "gpt-4", | |
| response_model=OverallConsensusEvaluation, | |
| messages=[ | |
| {"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks. | |
| Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query. | |
| If you don't know the answer, just say that you don't know. | |
| Use six sentences maximum and keep the answer concise."""}, | |
| {"role": "user", "content": prompt} | |
| ], | |
| temperature=0 | |
| ) | |
| return response | |
| # --------------------------------------- | |
| if st.session_state.get('runpfdr'): | |
| with st.spinner(search_text_list[np.random.choice(len(search_text_list))]): | |
| st.write('Settings: [Kw:',toggle_a, 'Time:',toggle_b, 'Cite:',toggle_c, '] top_k:',top_k, 'retrieval:',method) | |
| papers_df = run_query_ret(st.session_state.query) | |
| st.header(st.session_state.query) | |
| st.subheader('top-k relevant papers:') | |
| st.data_editor(papers_df, column_config = {'ADS Link':st.column_config.LinkColumn(display_text= 'https://ui.adsabs.harvard.edu/abs/(.*?)/abstract')}) | |
| with st.spinner(gen_text_list[np.random.choice(len(gen_text_list))]): | |
| if st.session_state.gen_method == 'agent': | |
| answer = run_agent_qa(st.session_state.query) | |
| answer_text = answer['output'] | |
| st.subheader('Answer with '+method2) | |
| st.write(answer_text) | |
| file_path = "agent_trace.txt" | |
| with open(file_path, 'r') as file: | |
| intermediate_steps = file.read() | |
| st.expander('Intermediate steps', expanded=False).write(intermediate_steps) | |
| elif st.session_state.gen_method == 'rag': | |
| answer = run_rag_qa(query, papers_df) | |
| st.subheader('Answer with '+method2) | |
| answer_text = answer['answer'] | |
| st.write(answer_text) | |
| query_kws = get_keywords(query) | |
| input_kws = st.session_state.keywords | |
| query_kws = query_kws + input_kws | |
| triggered_keywords = query_kws + input_kws | |
| st.write('**Triggered keywords:** `'+ "`, `".join(triggered_keywords)+'`') | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| with st.spinner("Evaluating question type"): | |
| with st.expander("Question type", expanded=True): | |
| st.subheader("Question type suggestion") | |
| question_type_gen = guess_question_type(query) | |
| if '<categorization>' in question_type_gen: | |
| question_type_gen = question_type_gen.split('<categorization>')[1] | |
| if '</categorization>' in question_type_gen: | |
| question_type_gen = question_type_gen.split('</categorization>')[0] | |
| question_type_gen = question_type_gen.replace('\n',' \n') | |
| st.markdown(question_type_gen) | |
| with col2: | |
| with st.spinner("Evaluating abstract consensus"): | |
| with st.expander("Abstract consensus", expanded=True): | |
| consensus_answer = evaluate_overall_consensus(query, [papers_df['abstract'][i] for i in range(len(papers_df))]) | |
| st.subheader("Consensus: "+consensus_answer.consensus) | |
| st.markdown(consensus_answer.explanation) | |
| st.markdown('Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score) | |
| session_vars = { | |
| "runtime": "pathfinder_v1_online", | |
| "query": query, | |
| "question_type": question_type, | |
| 'Keyword weighting': toggle_a, | |
| 'Time weighting': toggle_b, | |
| 'Citation weighting': toggle_c, | |
| "rag_method" : method, | |
| "gen_method" : method2, | |
| "answer" : answer_text, | |
| "question_type": question_type_gen, | |
| "consensus": consensus_answer.explanation, | |
| "topk" : list(papers_df['ads_id']), | |
| "topk_scores" : list(papers_df['Relevance']), | |
| "topk_papers": list(papers_df['ADS Link']), | |
| } | |
| def download_op(data): | |
| json_string = json.dumps(data) | |
| st.download_button( | |
| label='Download output', | |
| file_name="pathfinder_data.json", | |
| mime="application/json", | |
| data=json_string,) | |
| # with st.sidebar: | |
| download_op(session_vars) | |
| else: | |
| st.info("Use the sidebar to tweak the search parameters to get better results.") | |