Spaces:
Runtime error
Runtime error
remove colap
Browse files
app.py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
4 |
import gradio as gr
|
5 |
-
from google.colab import drive
|
6 |
import chromadb
|
7 |
-
from langchain.llms import HuggingFacePipeline
|
8 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import Chroma
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.memory import ConversationBufferMemory
|
|
|
14 |
|
15 |
# Download the model from HuggingFace
|
16 |
model_name = "anakin87/zephyr-7b-alpha-sharded"
|
@@ -30,23 +28,18 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
30 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
tokenizer.bos_token_id = 1 # Set beginning of sentence token id
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
-
# Load the documents
|
38 |
-
|
39 |
-
documents = loader.load()
|
40 |
|
41 |
# Split the documents into small chunks
|
42 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
43 |
all_splits = text_splitter.split_documents(documents)
|
44 |
|
45 |
-
# Specify embedding model
|
46 |
-
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
|
47 |
-
model_kwargs = {"device": "cpu"} # Using CPU since GPU is not available
|
48 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs=model_kwargs)
|
49 |
-
|
50 |
# Embed document chunks
|
51 |
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db")
|
52 |
|
@@ -54,7 +47,7 @@ vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, per
|
|
54 |
retriever = vectordb.as_retriever()
|
55 |
|
56 |
# Build HuggingFace pipeline for using zephyr-7b-alpha
|
57 |
-
|
58 |
"text-generation",
|
59 |
model=model,
|
60 |
tokenizer=tokenizer,
|
@@ -69,7 +62,7 @@ hf_pipeline = pipeline(
|
|
69 |
)
|
70 |
|
71 |
# Specify the llm
|
72 |
-
llm = HuggingFacePipeline(pipeline=
|
73 |
|
74 |
# Define the create_conversation function
|
75 |
def create_conversation(query: str, chat_history: list) -> tuple:
|
@@ -90,7 +83,7 @@ def create_conversation(query: str, chat_history: list) -> tuple:
|
|
90 |
return '', chat_history
|
91 |
|
92 |
except Exception as e:
|
93 |
-
chat_history.append((query,
|
94 |
return '', chat_history
|
95 |
|
96 |
# Define the Gradio UI
|
@@ -99,11 +92,7 @@ with gr.Blocks() as demo:
|
|
99 |
msg = gr.Textbox()
|
100 |
clear = gr.ClearButton([msg, chatbot])
|
101 |
|
102 |
-
|
103 |
-
_, chat_history = create_conversation(text, [])
|
104 |
-
chatbot.update(chat_history)
|
105 |
-
|
106 |
-
msg.submit(submit_message, [msg], [msg])
|
107 |
|
108 |
# Launch the Gradio demo
|
109 |
demo.launch()
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
3 |
import gradio as gr
|
|
|
4 |
import chromadb
|
|
|
5 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain.vectorstores import Chroma
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain_huggingface import HuggingFacePipeline
|
12 |
|
13 |
# Download the model from HuggingFace
|
14 |
model_name = "anakin87/zephyr-7b-alpha-sharded"
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
tokenizer.bos_token_id = 1 # Set beginning of sentence token id
|
30 |
|
31 |
+
# Specify embedding model
|
32 |
+
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
|
33 |
+
model_kwargs = {"device": "cpu"} # Using CPU since GPU is not available
|
34 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs=model_kwargs)
|
35 |
|
36 |
+
# Load the documents (replace this with your document loading logic)
|
37 |
+
documents = ["Sample document text 1", "Sample document text 2"]
|
|
|
38 |
|
39 |
# Split the documents into small chunks
|
40 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
41 |
all_splits = text_splitter.split_documents(documents)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
# Embed document chunks
|
44 |
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db")
|
45 |
|
|
|
47 |
retriever = vectordb.as_retriever()
|
48 |
|
49 |
# Build HuggingFace pipeline for using zephyr-7b-alpha
|
50 |
+
pipeline = pipeline(
|
51 |
"text-generation",
|
52 |
model=model,
|
53 |
tokenizer=tokenizer,
|
|
|
62 |
)
|
63 |
|
64 |
# Specify the llm
|
65 |
+
llm = HuggingFacePipeline(pipeline=pipeline)
|
66 |
|
67 |
# Define the create_conversation function
|
68 |
def create_conversation(query: str, chat_history: list) -> tuple:
|
|
|
83 |
return '', chat_history
|
84 |
|
85 |
except Exception as e:
|
86 |
+
chat_history.append((query, e))
|
87 |
return '', chat_history
|
88 |
|
89 |
# Define the Gradio UI
|
|
|
92 |
msg = gr.Textbox()
|
93 |
clear = gr.ClearButton([msg, chatbot])
|
94 |
|
95 |
+
msg.submit(create_conversation, [msg, chatbot], [msg, chatbot])
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Launch the Gradio demo
|
98 |
demo.launch()
|