Spaces:
Runtime error
Runtime error
remove colap
Browse files
app.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
-
# Import necessary libraries
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
| 4 |
import gradio as gr
|
| 5 |
-
from google.colab import drive
|
| 6 |
import chromadb
|
| 7 |
-
from langchain.llms import HuggingFacePipeline
|
| 8 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 11 |
from langchain.vectorstores import Chroma
|
| 12 |
from langchain.chains import ConversationalRetrievalChain
|
| 13 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
| 14 |
|
| 15 |
# Download the model from HuggingFace
|
| 16 |
model_name = "anakin87/zephyr-7b-alpha-sharded"
|
|
@@ -30,23 +28,18 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 31 |
tokenizer.bos_token_id = 1 # Set beginning of sentence token id
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
-
# Load the documents
|
| 38 |
-
|
| 39 |
-
documents = loader.load()
|
| 40 |
|
| 41 |
# Split the documents into small chunks
|
| 42 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 43 |
all_splits = text_splitter.split_documents(documents)
|
| 44 |
|
| 45 |
-
# Specify embedding model
|
| 46 |
-
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 47 |
-
model_kwargs = {"device": "cpu"} # Using CPU since GPU is not available
|
| 48 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs=model_kwargs)
|
| 49 |
-
|
| 50 |
# Embed document chunks
|
| 51 |
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db")
|
| 52 |
|
|
@@ -54,7 +47,7 @@ vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, per
|
|
| 54 |
retriever = vectordb.as_retriever()
|
| 55 |
|
| 56 |
# Build HuggingFace pipeline for using zephyr-7b-alpha
|
| 57 |
-
|
| 58 |
"text-generation",
|
| 59 |
model=model,
|
| 60 |
tokenizer=tokenizer,
|
|
@@ -69,7 +62,7 @@ hf_pipeline = pipeline(
|
|
| 69 |
)
|
| 70 |
|
| 71 |
# Specify the llm
|
| 72 |
-
llm = HuggingFacePipeline(pipeline=
|
| 73 |
|
| 74 |
# Define the create_conversation function
|
| 75 |
def create_conversation(query: str, chat_history: list) -> tuple:
|
|
@@ -90,7 +83,7 @@ def create_conversation(query: str, chat_history: list) -> tuple:
|
|
| 90 |
return '', chat_history
|
| 91 |
|
| 92 |
except Exception as e:
|
| 93 |
-
chat_history.append((query,
|
| 94 |
return '', chat_history
|
| 95 |
|
| 96 |
# Define the Gradio UI
|
|
@@ -99,11 +92,7 @@ with gr.Blocks() as demo:
|
|
| 99 |
msg = gr.Textbox()
|
| 100 |
clear = gr.ClearButton([msg, chatbot])
|
| 101 |
|
| 102 |
-
|
| 103 |
-
_, chat_history = create_conversation(text, [])
|
| 104 |
-
chatbot.update(chat_history)
|
| 105 |
-
|
| 106 |
-
msg.submit(submit_message, [msg], [msg])
|
| 107 |
|
| 108 |
# Launch the Gradio demo
|
| 109 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import chromadb
|
|
|
|
| 5 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
from langchain.vectorstores import Chroma
|
| 9 |
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
+
from langchain_huggingface import HuggingFacePipeline
|
| 12 |
|
| 13 |
# Download the model from HuggingFace
|
| 14 |
model_name = "anakin87/zephyr-7b-alpha-sharded"
|
|
|
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
tokenizer.bos_token_id = 1 # Set beginning of sentence token id
|
| 30 |
|
| 31 |
+
# Specify embedding model
|
| 32 |
+
embedding_model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 33 |
+
model_kwargs = {"device": "cpu"} # Using CPU since GPU is not available
|
| 34 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs=model_kwargs)
|
| 35 |
|
| 36 |
+
# Load the documents (replace this with your document loading logic)
|
| 37 |
+
documents = ["Sample document text 1", "Sample document text 2"]
|
|
|
|
| 38 |
|
| 39 |
# Split the documents into small chunks
|
| 40 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 41 |
all_splits = text_splitter.split_documents(documents)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Embed document chunks
|
| 44 |
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db")
|
| 45 |
|
|
|
|
| 47 |
retriever = vectordb.as_retriever()
|
| 48 |
|
| 49 |
# Build HuggingFace pipeline for using zephyr-7b-alpha
|
| 50 |
+
pipeline = pipeline(
|
| 51 |
"text-generation",
|
| 52 |
model=model,
|
| 53 |
tokenizer=tokenizer,
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
# Specify the llm
|
| 65 |
+
llm = HuggingFacePipeline(pipeline=pipeline)
|
| 66 |
|
| 67 |
# Define the create_conversation function
|
| 68 |
def create_conversation(query: str, chat_history: list) -> tuple:
|
|
|
|
| 83 |
return '', chat_history
|
| 84 |
|
| 85 |
except Exception as e:
|
| 86 |
+
chat_history.append((query, e))
|
| 87 |
return '', chat_history
|
| 88 |
|
| 89 |
# Define the Gradio UI
|
|
|
|
| 92 |
msg = gr.Textbox()
|
| 93 |
clear = gr.ClearButton([msg, chatbot])
|
| 94 |
|
| 95 |
+
msg.submit(create_conversation, [msg, chatbot], [msg, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# Launch the Gradio demo
|
| 98 |
demo.launch()
|