Spaces:
Sleeping
Sleeping
prep for final revisions for paper
Browse files- TODO.md +20 -0
- fullreport.py +43 -12
- plots.py +14 -1
TODO.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- Level of detail = description of context and performance
|
2 |
+
- Suggestion for "improvement" given
|
3 |
+
- "written" feedback
|
4 |
+
- Link
|
5 |
+
- How specific was the evaluator in describing the behavior? => exact language of Q1
|
6 |
+
- get rid of overall model just use component model
|
7 |
+
- get rid of true comments
|
8 |
+
|
9 |
+
- Medical education requires high-quality *written* feedback, but evaluating these *supervisor narrative comments* is time-consuming. The QuAL score has validity evidence for measuring the quality of short comments in this context. We developed a NLP/ML-powered tool to assess written comment quality via the QuAL score with high accuracy. Try it for yourself!
|
10 |
+
|
11 |
+
- include confidence bar
|
12 |
+
|
13 |
+
- change out to formal descriptions
|
14 |
+
|
15 |
+
# Paper
|
16 |
+
- zotero refs
|
17 |
+
- methods comments
|
18 |
+
- flowchart figure
|
19 |
+
- final word clouds
|
20 |
+
- add within-1 accuracy numbers
|
fullreport.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
import altair as alt
|
3 |
import pandas as pd
|
4 |
-
from plots import altair_gauge
|
|
|
5 |
|
6 |
md_about_qual = '''
|
7 |
The Quality of Assessment for Learning (QuAL) score measures three
|
@@ -27,19 +28,49 @@ class NQDFullReport(object):
|
|
27 |
# with st.expander('About the QuAL Score', True):
|
28 |
st.markdown(md_about_qual)
|
29 |
|
30 |
-
st.subheader('
|
31 |
-
|
32 |
-
gauge = altair_gauge(self.results['q1']['label'], 3, 'Level of Detail')
|
33 |
c1, c2 = st.columns(2)
|
34 |
with c1:
|
|
|
|
|
|
|
35 |
st.altair_chart(gauge, use_container_width=True)
|
36 |
with c2:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
st.altair_chart(bar, use_container_width=True)
|
|
|
1 |
import streamlit as st
|
2 |
import altair as alt
|
3 |
import pandas as pd
|
4 |
+
from plots import altair_gauge, pred_bar_chart
|
5 |
+
import streamlit.components.v1 as components
|
6 |
|
7 |
md_about_qual = '''
|
8 |
The Quality of Assessment for Learning (QuAL) score measures three
|
|
|
28 |
# with st.expander('About the QuAL Score', True):
|
29 |
st.markdown(md_about_qual)
|
30 |
|
31 |
+
st.subheader('Level of Detail')
|
|
|
|
|
32 |
c1, c2 = st.columns(2)
|
33 |
with c1:
|
34 |
+
gauge = altair_gauge(self.results['q1']['label'], 3, 'Level of Detail')
|
35 |
+
gauge_html = gauge.to_html()
|
36 |
+
# components.html(gauge_html, height=225, width=334)
|
37 |
st.altair_chart(gauge, use_container_width=True)
|
38 |
with c2:
|
39 |
+
bar = pred_bar_chart(self.results['q1']['scores'])
|
40 |
+
st.altair_chart(bar, use_container_width=True)
|
41 |
+
|
42 |
+
st.subheader('Suggestion for Improvement')
|
43 |
+
c1, c2 = st.columns(2)
|
44 |
+
with c1:
|
45 |
+
q2lab = self.results['q2i']['label']
|
46 |
+
st.markdown('#### Suggestion Given')
|
47 |
+
if q2lab == 0:
|
48 |
+
md_str = '# ✅ Yes'
|
49 |
+
else:
|
50 |
+
md_str = '# ❌ No'
|
51 |
+
st.markdown(md_str)
|
52 |
+
# st.metric('Suggestion Given', (md_str),
|
53 |
+
# help='Did the evaluator give a suggestion for improvement?')
|
54 |
+
gauge = altair_gauge(self.results['q2i']['label'], 1, 'Suggestion for Improvement')
|
55 |
+
# st.altair_chart(gauge, use_container_width=True)
|
56 |
+
with c2:
|
57 |
+
bar = pred_bar_chart(self.results['q2i']['scores'], binary_labels={0: 'Yes', 1: 'No'})
|
58 |
+
st.altair_chart(bar, use_container_width=True)
|
59 |
+
|
60 |
+
st.subheader('Suggestion Linking')
|
61 |
+
c1, c2 = st.columns(2)
|
62 |
+
with c1:
|
63 |
+
q2lab = self.results['q3i']['label']
|
64 |
+
st.markdown('#### Suggestion Linked')
|
65 |
+
if q2lab == 0:
|
66 |
+
md_str = '# ✅ Yes'
|
67 |
+
else:
|
68 |
+
md_str = '# ❌ No'
|
69 |
+
st.markdown(md_str)
|
70 |
+
# st.metric('Suggestion Given', (md_str),
|
71 |
+
# help='Did the evaluator give a suggestion for improvement?')
|
72 |
+
gauge = altair_gauge(self.results['q3i']['label'], 1, 'Suggestion for Improvement')
|
73 |
+
# st.altair_chart(gauge, use_container_width=True)
|
74 |
+
with c2:
|
75 |
+
bar = pred_bar_chart(self.results['q3i']['scores'], binary_labels={0: 'Yes', 1: 'No'})
|
76 |
st.altair_chart(bar, use_container_width=True)
|
plots.py
CHANGED
@@ -16,4 +16,17 @@ def get_color(score, max_score):
|
|
16 |
cmap = cm.get_cmap('RdYlGn')
|
17 |
color = cmap(score / float(max_score))
|
18 |
color = f'rgba({int(color[0]*256)}, {int(color[1]*256)}, {int(color[2]*256)}, {int(color[3]*256)})'
|
19 |
-
return color
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
cmap = cm.get_cmap('RdYlGn')
|
17 |
color = cmap(score / float(max_score))
|
18 |
color = f'rgba({int(color[0]*256)}, {int(color[1]*256)}, {int(color[2]*256)}, {int(color[3]*256)})'
|
19 |
+
return color
|
20 |
+
|
21 |
+
def pred_bar_chart(scores, binary_labels=None):
|
22 |
+
bar_df = (pd.DataFrame(scores)
|
23 |
+
.reset_index()
|
24 |
+
.rename(columns={'index': 'Rating', 0: 'Score'}))
|
25 |
+
if binary_labels:
|
26 |
+
bar_df['Rating'].replace(binary_labels, inplace=True)
|
27 |
+
bar = alt.Chart(bar_df).mark_bar().encode(
|
28 |
+
x='Rating:O', y='Score',
|
29 |
+
color=alt.Color('Rating', scale=alt.Scale(scheme='redyellowgreen'), legend=None)
|
30 |
+
).properties(height=225, title='Prediction Scores')
|
31 |
+
bar.to_html()
|
32 |
+
return bar
|