File size: 3,098 Bytes
9be5a22
 
 
 
5cc9296
f58c9c5
5cc9296
9be5a22
 
 
 
f58c9c5
9be5a22
 
 
 
 
 
 
 
f58c9c5
 
 
 
 
9be5a22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58c9c5
 
9be5a22
 
 
5cc9296
 
f58c9c5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
import transformers as tf
import pandas as pd

from overview import NQDOverview
from fullreport import NQDFullReport


# Function to load and cache models
@st.experimental_singleton(show_spinner=False)
def load_model(username, prefix, model_name):
    p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}', return_all_scores=True)
    return p

@st.experimental_singleton(show_spinner=False)
def load_pickle(f):
    return pd.read_pickle(f)

def get_results(model, c):
    res = model(c)[0]
    scores = [r['score'] for r in res]
    label = max(range(len(scores)), key=lambda i: scores[i])
    # label = float(res['label'].split('_')[1])
    # scores = res['score']
    return {'label': label, 'scores': scores}

def run_models(model_names, models, c):
    results = {}
    for mn in model_names:
        results[mn] = get_results(models[mn], c)
    return results


st.title('Assess the *QuAL*ity of your feedback')
st.caption(
"""Medical education *requires* high-quality feedback, but evaluating feedback
is difficult and time-consuming. This tool uses NLP/ML to predict a validated
feedback quality metric known as the QuAL Score. *Try it for yourself!*
""")

### Load models
# Specify which models to load 
USERNAME = 'maxspad'
PREFIX = 'nlp-qual'
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
n_models = float(len(models_to_load))
models = {}
# Show a progress bar while models are downloading, 
# then hide it when done
lc_placeholder = st.empty()
loader_container = lc_placeholder.container()
loader_container.caption('Loading models... please wait...')
pbar = loader_container.progress(0.0)
for i, mn in enumerate(models_to_load):
    pbar.progress((i+1.0) / n_models)
    models[mn] = load_model(USERNAME, PREFIX, mn)
lc_placeholder.empty()

### Load example data
examples = load_pickle('test.pkl')

### Process input
ex = examples['comment'].sample(1).tolist()[0]
try:
    ex = ex.strip().replace('_x000D_', '').replace('nan', 'blank')
except:
    ex = 'blank'
if 'comment' not in st.session_state:
    st.session_state['comment'] = ex
with st.form('comment_form'):
    comment = st.text_area('Try a comment:', value=st.session_state['comment'])
    left_col, right_col = st.columns([1,9], gap='medium')
    submitted = left_col.form_submit_button('Submit')
    trying_example = right_col.form_submit_button('Try an example!')
    
    if submitted:
        st.session_state['button_clicked'] = 'submit'
        st.session_state['comment'] = comment
        st.experimental_rerun()
    elif trying_example:
        st.session_state['button_clicked'] = 'example'
        st.session_state['comment'] = ex
        st.experimental_rerun()
    
results = run_models(models_to_load, models, st.session_state['comment'])
# tab_titles = ['Overview', 'Q1 - Level of Detail', 'Q2 - Suggestion Given', 'Q3 - Suggestion Linked', 'About']
tab_titles = ['Overview', 'Full Report']
tabs = st.tabs(tab_titles)

with tabs[0]:
    overview = NQDOverview(st, results)
    overview.draw()
with tabs[1]:
    fullrep = NQDFullReport(st, results)
    fullrep.draw()