# import streamlit as st # from transformers import pipeline # from PIL import Image # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") # st.title("Hot Dog? Or Not?") # file_name = st.file_uploader("Upload a hot dog candidate image") # if file_name is not None: # col1, col2 = st.columns(2) # image = Image.open(file_name) # col1.image(image, use_column_width=True) # predictions = pipeline(image) # col2.header("Probabilities") # for p in predictions: # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") import streamlit as st from transformers import pipeline pipe = pipeline(task="sentiment-analysis") st.title("Toxic Tweets Analyzer") text = st.text_area("I'm nice at ping pong") st.form_submit_button(label="Submit") if text: out = pipe(text) st.json(out)