File size: 868 Bytes
7f81307
 
 
85f867b
7f81307
85f867b
7f81307
85f867b
7f81307
85f867b
7f81307
 
7179214
7f81307
 
 
7179214
7f81307
 
 
7179214
 
7f81307
 
7179214
 
7f81307
 
7179214
37cf69d
 
 
 
 
7f81307
 
85f867b
cec5757
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# import streamlit as st
# from transformers import pipeline
# from PIL import Image

# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

# st.title("Hot Dog? Or Not?")

# file_name = st.file_uploader("Upload a hot dog candidate image")

# if file_name is not None:
#     col1, col2 = st.columns(2)

#     image = Image.open(file_name)
#     col1.image(image, use_column_width=True)
#     predictions = pipeline(image)

#     col2.header("Probabilities")
#     for p in predictions:
#         col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")


import streamlit as st
from transformers import pipeline


pipe = pipeline(task="sentiment-analysis")
st.title("Toxic Tweets Analyzer")

text = st.text_area("I'm nice at ping pong")

st.form_submit_button(label="Submit")

if text:
    out = pipe(text)
    st.json(out)