File size: 3,325 Bytes
b9f0115
e706d2b
 
f43d01b
e706d2b
b9f0115
 
f43d01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f0115
0ecdec8
b9f0115
 
 
 
 
 
a83472e
 
b9f0115
f43d01b
 
 
e706d2b
 
5dc6bd9
f43d01b
b9f0115
f43d01b
5dc6bd9
b9f0115
5dc6bd9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import torch
import sys
import os
from fastai.vision.all import *
import gradio as gr

############## DVC ################################

PROD_MODEL_PATH = "src/models"
TRAIN_PATH = "src/data/processed/train/bathroom"
TEST_PATH = ""src/data/processed/test/bathroom""

if "DYNO" in os.environ and os.path.isdir(".dvc"):
    print("Running DVC")
    os.system("dvc config cache.type copy")
    os.system("dvc config core.no_scm true")
    if os.system(f"dvc pull {PROD_MODEL_PATH} {TRAIN_PATH } {TEST_PATH }") != 0:
        exit("dvc pull failed")
    os.system("rm -r .dvc .apt/usr/lib/dvc")


############## Inference ##############################

class ImageImageDataLoaders(DataLoaders):
    """Basic wrapper around several `DataLoader`s with factory methods for Image to Image problems"""
    @classmethod
    @delegates(DataLoaders.from_dblock)
    def from_label_func(cls, path, filenames, label_func, valid_pct=0.2, seed=None, item_transforms=None,
                        batch_transforms=None, **kwargs):
        """Create from list of `fnames` in `path`s with `label_func`."""
        datablock = DataBlock(blocks=(ImageBlock(cls=PILImage), ImageBlock(cls=PILImageBW)),
                              get_y=label_func,
                              splitter=RandomSplitter(valid_pct, seed=seed),
                              item_tfms=item_transforms,
                              batch_tfms=batch_transforms)
        res = cls.from_dblock(datablock, filenames, path=path, **kwargs)
        return res


def get_y_fn(x):
    y = str(x.absolute()).replace('.jpg', '_depth.png')
    y = Path(y)

    return y


def create_data(data_path):
    fnames = get_files(data_path/'train', extensions='.jpg')
    data = ImageImageDataLoaders.from_label_func(data_path/'train', seed=42, bs=4, num_workers=0, filenames=fnames, label_func=get_y_fn)
    return data

data = create_data(Path('src/data/processed'))
learner = unet_learner(data,resnet34, metrics=rmse, wd=1e-2, n_out=3, loss_func=MSELossFlat(), path='src/')
learner.load('model')

################### Gradio Web APP ################################

title = "SavtaDepth WebApp"
description = "Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow."
article = "<p style='text-align: center'><a href='https://dagshub.com/OperationSavta/SavtaDepth' target='_blank'>SavtaDepth Project from OperationSavta</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1XU4DgQ217_hUMU1dllppeQNw3pTRlHy1?usp=sharing' target='_blank'>Google Colab Demo</a></p></center></p>"

examples = [
    ["examples/00008.jpg"],
    ["examples/00045.jpg"],
]
favicon = "examples/favicon.ico"
thumbnail = "examples/SavtaDepth.png"

def sepia(input_img):
   
    return PILImageBW.create((learner.predict(input_img))[0]).convert('L')


def main():
	iface = gr.Interface(sepia, gr.inputs.Image(shape=(640,480),type='numpy'), "image", title = title, description = description, article = article, examples = examples,theme ="peach",thumbnail=thumbnail)

	iface.launch(favicon_path=favicon,server_name="0.0.0.0",server_port=8080)
# enable_queue=True,auth=("admin", "pass1234")

if __name__ == '__main__':
	main()