File size: 2,779 Bytes
27ac14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfabd41
 
 
27ac14c
 
 
 
f290948
27ac14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfabd41
27ac14c
90708d3
27ac14c
90708d3
 
 
 
dfabd41
27ac14c
90708d3
dfabd41
90708d3
27ac14c
 
 
90708d3
dfabd41
 
27ac14c
 
6ad7338
 
 
 
 
 
27ac14c
 
90708d3
 
27ac14c
3f2719d
 
 
02a6a6d
6ad7338
90708d3
 
27ac14c
 
 
3f2719d
90708d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import gradio as gr
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_core.prompts import PromptTemplate

# Load the API key from environment variables
groq_api_key = os.getenv("Groq_API_Key")

# Initialize the language model with the specified model and API key
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_api_key)

# Initialize the embedding model
embed_model = HuggingFaceEmbeddings(
    model_name="mixedbread-ai/mxbai-embed-large-v1", model_kwargs={"device": "cpu"}
)

# Load the vector store from a local directory
vectorstore = Chroma(
    "Starwars_Vectordb",
    embedding_function=embed_model,
)

# Convert the vector store to a retriever
retriever = vectorstore.as_retriever()

# Define the prompt template for the language model
template = """You are a Star Wars assistant for answering questions. 
    Use the provided context to answer the question. 
    If you don't know the answer, say so. Explain your answer in detail. 
    Do not discuss the context in your response; just provide the answer directly.

    Context: {context}

    Question: {question}
    
    Answer:"""

rag_prompt = PromptTemplate.from_template(template)

# Create the RAG (Retrieval-Augmented Generation) chain
rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | rag_prompt
    | llm
    | StrOutputParser()
)


# Define the function to stream the RAG memory
def rag_memory_stream(text, last_input_text=""):
    partial_text = ""

    # If the text has changed, reset the partial_text and regenerate
    if text != last_input_text:
        partial_text = ""  # Clear partial text when input changes

    for new_text in rag_chain.stream(text):
        # If input changes, reset generation
        if text != last_input_text:
            break  # Stop current generation if text has changed
        partial_text += new_text
        yield partial_text

    return partial_text, text  # Return updated text for Gradio state


# Set up the Gradio interface
title = "Real-time AI App with Groq API and LangChain"
description = """
<center>
<img src="https://huggingface.co/spaces/kingabzpro/Real-Time-RAG/resolve/main/Images/cover.png" alt="logo" width="550"/>
</center>
"""

demo = gr.Interface(
    fn=rag_memory_stream,
    inputs=["text", "state"],
    outputs=["text", "state"],
    live=True,
    batch=True,
    max_batch_size=10000,
    concurrency_limit=12,
    allow_flagging="never",
    theme=gr.themes.Soft(),
    title=title,
    description=description,
)

# Launch the Gradio interface
demo.queue()
demo.launch()