king007 commited on
Commit
9f42923
·
1 Parent(s): 082cde2

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -72
app.py DELETED
@@ -1,72 +0,0 @@
1
- import gradio as gr
2
- import pandas as pd
3
- from transformers import (
4
- AutoModelForSeq2SeqLM,
5
- AutoModelForTableQuestionAnswering,
6
- AutoTokenizer,
7
- pipeline,
8
- )
9
-
10
- model_tapex = "microsoft/tapex-large-finetuned-wtq"
11
- tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex)
12
- model_tapex = AutoModelForSeq2SeqLM.from_pretrained(model_tapex)
13
- pipe_tapex = pipeline(
14
- "table-question-answering", model=model_tapex, tokenizer=tokenizer_tapex
15
- )
16
-
17
- model_tapas = "google/tapas-large-finetuned-wtq"
18
- tokenizer_tapas = AutoTokenizer.from_pretrained(model_tapas)
19
- model_tapas = AutoModelForTableQuestionAnswering.from_pretrained(model_tapas)
20
- pipe_tapas = pipeline(
21
- "table-question-answering", model=model_tapas, tokenizer=tokenizer_tapas
22
- )
23
-
24
-
25
- def process(query, file, correct_answer, rows=20):
26
- table = pd.read_csv(file.name, header=0).astype(str)
27
- table = table[:rows]
28
- result_tapex = pipe_tapex(table=table, query=query)
29
- result_tapas = pipe_tapas(table=table, query=query)
30
- return result_tapex["answer"], result_tapas["answer"], correct_answer
31
-
32
-
33
- # Inputs
34
- query_text = gr.Text(label="Enter a question")
35
- input_file = gr.File(label="Upload a CSV file", type="file")
36
- rows_slider = gr.Slider(label="Number of rows")
37
-
38
- # Output
39
- answer_text_tapex = gr.Text(label="TAPEX answer")
40
- answer_text_tapas = gr.Text(label="TAPAS answer")
41
-
42
- description = "This Space lets you ask questions on CSV documents with Microsoft [TAPEX-Large](https://huggingface.co/microsoft/tapex-large-finetuned-wtq) and Google [TAPAS-Large](https://huggingface.co/google/tapas-large-finetuned-wtq). \
43
- Both have been fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset. \n\n\
44
- A sample file with football statistics is available in the repository: \n\n\
45
- * Which team has the most wins? Answer: Manchester City FC\n\
46
- * Which team has the most wins: Chelsea, Liverpool or Everton? Answer: Liverpool\n\
47
- * Which teams have scored less than 40 goals? Answer: Cardiff City FC, Fulham FC, Brighton & Hove Albion FC, Huddersfield Town FC\n\
48
- * What is the average number of wins? Answer: 16 (rounded)\n\n\
49
- You can also upload your own CSV file. Please note that maximum sequence length for both models is 1024 tokens, \
50
- so you may need to limit the number of rows in your CSV file. Chunking is not implemented yet."
51
-
52
- iface = gr.Interface(
53
- theme="huggingface",
54
- description=description,
55
- layout="vertical",
56
- fn=process,
57
- inputs=[query_text, input_file, rows_slider],
58
- outputs=[answer_text_tapex, answer_text_tapas],
59
- examples=[
60
- ["Which team has the most wins?", "default_file.csv", 20],
61
- [
62
- "Which team has the most wins: Chelsea, Liverpool or Everton?",
63
- "default_file.csv",
64
- 20,
65
- ],
66
- ["Which teams have scored less than 40 goals?", "default_file.csv", 20],
67
- ["What is the average number of wins?", "default_file.csv", 20],
68
- ],
69
- allow_flagging="never",
70
- )
71
-
72
- iface.launch()