Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
import pandas as pd
|
4 |
from transformers import (
|
5 |
AutoModelForSeq2SeqLM,
|
6 |
AutoModelForTableQuestionAnswering,
|
7 |
AutoTokenizer,
|
8 |
pipeline,
|
|
|
|
|
9 |
)
|
|
|
10 |
|
11 |
# model_tapex = "microsoft/tapex-large-finetuned-wtq"
|
12 |
# tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex)
|
@@ -16,7 +17,8 @@ from transformers import (
|
|
16 |
# )
|
17 |
|
18 |
#new
|
19 |
-
|
|
|
20 |
|
21 |
|
22 |
# model_tapas = "google/tapas-large-finetuned-wtq"
|
@@ -30,16 +32,16 @@ pipe_tapex = pipeline(task="table-question-answering", model="microsoft/tapex-la
|
|
30 |
pipe_tapas = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
31 |
|
32 |
|
33 |
-
|
34 |
-
table = pd.read_csv(file.name, header=0).astype(str)
|
35 |
-
table = table[:rows]
|
36 |
-
result_tapex = pipe_tapex(table=table, query=query)
|
37 |
-
return result_tapex["answer"], result_tapas["answer"], correct_answer
|
38 |
|
39 |
def process2(query, csv_data):
|
40 |
csv_data={"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
|
41 |
table = pd.DataFrame.from_dict(csv_data)
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
result_tapas = pipe_tapas(table=table, query=query)['cells'][0]
|
44 |
return result_tapex, result_tapas
|
45 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import (
|
3 |
AutoModelForSeq2SeqLM,
|
4 |
AutoModelForTableQuestionAnswering,
|
5 |
AutoTokenizer,
|
6 |
pipeline,
|
7 |
+
TapexTokenizer,
|
8 |
+
BartForConditionalGeneration
|
9 |
)
|
10 |
+
import pandas as pd
|
11 |
|
12 |
# model_tapex = "microsoft/tapex-large-finetuned-wtq"
|
13 |
# tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex)
|
|
|
17 |
# )
|
18 |
|
19 |
#new
|
20 |
+
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base")
|
21 |
+
model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-base")
|
22 |
|
23 |
|
24 |
# model_tapas = "google/tapas-large-finetuned-wtq"
|
|
|
32 |
pipe_tapas = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
33 |
|
34 |
|
35 |
+
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def process2(query, csv_data):
|
38 |
csv_data={"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
|
39 |
table = pd.DataFrame.from_dict(csv_data)
|
40 |
+
#microsoft
|
41 |
+
encoding = tokenizer(table=table, query=query, return_tensors="pt")
|
42 |
+
outputs = model.generate(**encoding)
|
43 |
+
result_tapex=tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
44 |
+
#google
|
45 |
result_tapas = pipe_tapas(table=table, query=query)['cells'][0]
|
46 |
return result_tapex, result_tapas
|
47 |
|