ultimate-rvc / src /frontend /tabs /manage_models.py
Blane187's picture
Upload folder using huggingface_hub
c8be32d verified
"""
This module contains the code for the "Manage models" tab.
"""
from typings.extra import DropdownValue
from functools import partial
import gradio as gr
import pandas as pd
from backend.manage_voice_models import (
delete_all_models,
delete_models,
download_online_model,
filter_public_models_table,
get_current_models,
load_public_model_tags,
load_public_models_table,
upload_local_model,
)
from frontend.common import (
PROGRESS_BAR,
confirm_box_js,
confirmation_harness,
exception_harness,
identity,
update_dropdowns,
)
def _update_model_lists(
num_components: int, value: DropdownValue = None, value_indices: list[int] = []
) -> gr.Dropdown | tuple[gr.Dropdown, ...]:
"""
Updates the choices of one or more dropdown
components to the current set of voice models.
Optionally updates the default value of one or more of these components.
Parameters
----------
num_components : int
Number of dropdown components to update.
value : DropdownValue, optional
New value for dropdown components.
value_indices : list[int], default=[]
Indices of dropdown components to update the value for.
Returns
-------
gr.Dropdown | tuple[gr.Dropdown, ...]
Updated dropdown component or components.
"""
return update_dropdowns(get_current_models, num_components, value, value_indices)
def _filter_public_models_table_harness(
tags: list[str], query: str, progress_bar: gr.Progress
) -> gr.Dataframe:
"""
Filter the public models table based on tags and search query.
Parameters
----------
tags : list[str]
Tags to filter the table by.
query : str
Search query to filter the table by.
progress_bar : gr.Progress
Progress bar to display progress.
Returns
-------
gr.Dataframe
The filtered public models table rendered in a Gradio dataframe.
"""
models_table = filter_public_models_table(tags, query, progress_bar)
return gr.Dataframe(value=models_table)
def _pub_dl_autofill(
pub_models: pd.DataFrame, event: gr.SelectData
) -> tuple[gr.Textbox, gr.Textbox]:
"""
Autofill download link and model name based on selected row in public models table.
Parameters
----------
pub_models : pd.DataFrame
Public models table.
event : gr.SelectData
Event containing the selected row.
Returns
-------
download_link : gr.Textbox
Autofilled download link.
model_name : gr.Textbox
Autofilled model name.
"""
event_index = event.index[0]
url_str = pub_models.loc[event_index, "URL"]
model_str = pub_models.loc[event_index, "Model Name"]
return gr.Textbox(value=url_str), gr.Textbox(value=model_str)
def render(
dummy_deletion_checkbox: gr.Checkbox,
delete_confirmation: gr.State,
rvc_models_to_delete: gr.Dropdown,
rvc_model_1click: gr.Dropdown,
rvc_model_multi: gr.Dropdown,
) -> None:
"""
Render "Manage models" tab.
Parameters
----------
dummy_deletion_checkbox : gr.Checkbox
Dummy component needed for deletion confirmation in the
"Manage audio" tab and the "Manage models" tab.
delete_confirmation : gr.State
Component storing deletion confirmation status in the
"Manage audio" tab and the "Manage models" tab.
rvc_models_to_delete : gr.Dropdown
Dropdown for selecting models to delete in the
"Manage models" tab.
rvc_model_1click : gr.Dropdown
Dropdown for selecting models in the "One-click generation" tab.
rvc_model_multi : gr.Dropdown
Dropdown for selecting models in the "Multi-step generation" tab.
"""
# Download tab
with gr.Tab("Download model"):
with gr.Accordion("View public models table", open=False):
gr.Markdown("")
gr.Markdown("HOW TO USE")
gr.Markdown("- Filter models using tags or search bar")
gr.Markdown("- Select a row to autofill the download link and model name")
filter_tags = gr.CheckboxGroup(
value=[],
label="Show voice models with tags",
choices=load_public_model_tags(),
)
search_query = gr.Textbox(label="Search")
public_models_table = gr.DataFrame(
value=load_public_models_table([]),
headers=["Model Name", "Description", "Tags", "Credit", "Added", "URL"],
label="Available Public Models",
interactive=False,
)
with gr.Row():
model_zip_link = gr.Textbox(
label="Download link to model",
info=(
"Should point to a zip file containing a .pth model file and an"
" optional .index file."
),
)
model_name = gr.Textbox(
label="Model name", info="Enter a unique name for the model."
)
with gr.Row():
download_btn = gr.Button("Download 🌐", variant="primary", scale=19)
dl_output_message = gr.Textbox(
label="Output message", interactive=False, scale=20
)
download_button_click = download_btn.click(
partial(
exception_harness(download_online_model), progress_bar=PROGRESS_BAR
),
inputs=[model_zip_link, model_name],
outputs=dl_output_message,
)
public_models_table.select(
_pub_dl_autofill,
inputs=public_models_table,
outputs=[model_zip_link, model_name],
show_progress="hidden",
)
search_query.change(
partial(
exception_harness(_filter_public_models_table_harness),
progress_bar=PROGRESS_BAR,
),
inputs=[filter_tags, search_query],
outputs=public_models_table,
show_progress="hidden",
)
filter_tags.select(
partial(
exception_harness(_filter_public_models_table_harness),
progress_bar=PROGRESS_BAR,
),
inputs=[filter_tags, search_query],
outputs=public_models_table,
show_progress="hidden",
)
# Upload tab
with gr.Tab("Upload model"):
with gr.Accordion("HOW TO USE"):
gr.Markdown(
"- Find locally trained RVC v2 model file (weights folder) and optional"
" index file (logs/[name] folder)"
)
gr.Markdown(
"- Upload model file and optional index file directly or compress into"
" a zip file and upload that"
)
gr.Markdown("- Enter a unique name for the model")
gr.Markdown("- Click 'Upload model'")
with gr.Row():
with gr.Column():
model_files = gr.File(label="Files", file_count="multiple")
local_model_name = gr.Textbox(label="Model name")
with gr.Row():
model_upload_button = gr.Button("Upload model", variant="primary", scale=19)
local_upload_output_message = gr.Textbox(
label="Output message", interactive=False, scale=20
)
model_upload_button_click = model_upload_button.click(
partial(
exception_harness(upload_local_model), progress_bar=PROGRESS_BAR
),
inputs=[model_files, local_model_name],
outputs=local_upload_output_message,
)
with gr.Tab("Delete models"):
with gr.Row():
with gr.Column():
rvc_models_to_delete.render()
with gr.Column():
rvc_models_deleted_message = gr.Textbox(
label="Output message", interactive=False
)
with gr.Row():
with gr.Column():
delete_models_button = gr.Button(
"Delete selected models", variant="secondary"
)
delete_all_models_button = gr.Button(
"Delete all models", variant="primary"
)
with gr.Column():
pass
delete_models_button_click = delete_models_button.click(
# NOTE not sure why, but in order for subsequent event listener
# to trigger, changes coming from the js code
# have to be routed through an identity function which takes as
# input some dummy component of type bool.
identity,
inputs=dummy_deletion_checkbox,
outputs=delete_confirmation,
js=confirm_box_js("Are you sure you want to delete the selected models?"),
show_progress="hidden",
).then(
partial(confirmation_harness(delete_models), progress_bar=PROGRESS_BAR),
inputs=[delete_confirmation, rvc_models_to_delete],
outputs=rvc_models_deleted_message,
)
delete_all_models_btn_click = delete_all_models_button.click(
identity,
inputs=dummy_deletion_checkbox,
outputs=delete_confirmation,
js=confirm_box_js("Are you sure you want to delete all models?"),
show_progress="hidden",
).then(
partial(confirmation_harness(delete_all_models), progress_bar=PROGRESS_BAR),
inputs=delete_confirmation,
outputs=rvc_models_deleted_message,
)
for click_event in [
download_button_click,
model_upload_button_click,
delete_models_button_click,
delete_all_models_btn_click,
]:
click_event.success(
partial(_update_model_lists, 3, [], [2]),
outputs=[rvc_model_1click, rvc_model_multi, rvc_models_to_delete],
show_progress="hidden",
)