import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM import torch # Import torch # --- Model Loading (Do this only once, outside the function) --- # Option 1: Pipeline (High-Level, Easier) use_pipeline = True # Set to False to use the manual method if use_pipeline: pipe = pipeline("text-generation", model="kakaocorp/kanana-nano-2.1b-base", device="cpu") #Explicitly on CPU else: # Option 2: Manual Tokenizer and Model (More Control) tokenizer = AutoTokenizer.from_pretrained("kakaocorp/kanana-nano-2.1b-base") model = AutoModelForCausalLM.from_pretrained("kakaocorp/kanana-nano-2.1b-base") # No need to move to GPU. It will default to CPU. print("Model loaded on CPU") # --- Generation Function --- def generate_text(prompt, max_length=50, temperature=1.0, top_k=50, top_p=1.0, no_repeat_ngram_size=0, num_return_sequences=1): """Generates text based on the given prompt and parameters.""" if use_pipeline: messages = [{"role": "user", "content": prompt}] # Format for pipeline try: result = pipe( messages, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, no_repeat_ngram_size=no_repeat_ngram_size, num_return_sequences=num_return_sequences, return_full_text=False, # Important: We only want generated text pad_token_id=pipe.tokenizer.eos_token_id # Prevent warning, pipeline knows the EOS token ) # Pipeline returns a list of dictionaries, each with 'generated_text' return "\n\n".join([res['generated_text'] for res in result]) except Exception as e: return f"Error during generation: {e}" else: # Manual method try: inputs = tokenizer(prompt, return_tensors="pt") # No need to move to GPU. Inputs will default to CPU. outputs = model.generate( **inputs, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, no_repeat_ngram_size=no_repeat_ngram_size, num_return_sequences=num_return_sequences, pad_token_id=tokenizer.eos_token_id, # Ensure padding is correct do_sample=True # Ensure sampling happens. ) generated_texts = [] for i in range(outputs.shape[0]): generated_text = tokenizer.decode(outputs[i], skip_special_tokens=True) generated_texts.append(generated_text) return "\n\n".join(generated_texts) except Exception as e: return f"Error during generation: {e}" # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Text Generation with kakaocorp/kanana-nano-2.1b-base") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") with gr.Accordion("Generation Parameters", open=False): max_length_slider = gr.Slider(label="Max Length", minimum=10, maximum=512, value=50, step=1) temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=1.0, step=0.1) top_k_slider = gr.Slider(label="Top K", minimum=0, maximum=100, value=50, step=1) top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=1.0, step=0.05) no_repeat_ngram_size_slider = gr.Slider(label="No Repeat N-gram Size", minimum=0, maximum=10, value=0, step=1) # Add the slider num_return_sequences_slider = gr.Slider(label="Number of Return Sequences", minimum=1, maximum=5, value=1, step=1) generate_button = gr.Button("Generate") with gr.Column(): output_text = gr.Textbox(label="Generated Text", interactive=False) # Use interactive=False generate_button.click( generate_text, inputs=[ prompt_input, max_length_slider, temperature_slider, top_k_slider, top_p_slider, no_repeat_ngram_size_slider, num_return_sequences_slider ], outputs=output_text, ) demo.launch() # Remove share=True for local testing, add it back for deployment