Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,109 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# --- Model Loading (Do this only once, outside the function) ---
|
5 |
+
|
6 |
+
# Option 1: Pipeline (High-Level, Easier)
|
7 |
+
use_pipeline = True # Set to False to use the manual method
|
8 |
+
|
9 |
+
if use_pipeline:
|
10 |
+
pipe = pipeline("text-generation", model="kakaocorp/kanana-nano-2.1b-base")
|
11 |
+
else:
|
12 |
+
# Option 2: Manual Tokenizer and Model (More Control)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("kakaocorp/kanana-nano-2.1b-base")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("kakaocorp/kanana-nano-2.1b-base")
|
15 |
+
# Move model to GPU if available
|
16 |
+
if model.device.type != 'cuda' and torch.cuda.is_available():
|
17 |
+
model = model.to("cuda")
|
18 |
+
print("Model moved to CUDA")
|
19 |
+
|
20 |
+
# --- Generation Function ---
|
21 |
+
|
22 |
+
def generate_text(prompt, max_length=50, temperature=1.0, top_k=50, top_p=1.0, no_repeat_ngram_size=0, num_return_sequences=1):
|
23 |
+
"""Generates text based on the given prompt and parameters."""
|
24 |
+
|
25 |
+
if use_pipeline:
|
26 |
+
messages = [{"role": "user", "content": prompt}] # Format for pipeline
|
27 |
+
try:
|
28 |
+
result = pipe(
|
29 |
+
messages,
|
30 |
+
max_length=max_length,
|
31 |
+
temperature=temperature,
|
32 |
+
top_k=top_k,
|
33 |
+
top_p=top_p,
|
34 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
35 |
+
num_return_sequences=num_return_sequences,
|
36 |
+
return_full_text=False, # Important: We only want generated text
|
37 |
+
pad_token_id=pipe.tokenizer.eos_token_id # Prevent warning, pipeline knows the EOS token
|
38 |
+
)
|
39 |
+
# Pipeline returns a list of dictionaries, each with 'generated_text'
|
40 |
+
return "\n\n".join([res['generated_text'] for res in result])
|
41 |
+
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error during generation: {e}"
|
44 |
+
|
45 |
+
else: # Manual method
|
46 |
+
try:
|
47 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
48 |
+
# Move input tensors to the same device as the model
|
49 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
50 |
+
|
51 |
+
outputs = model.generate(
|
52 |
+
**inputs,
|
53 |
+
max_length=max_length,
|
54 |
+
temperature=temperature,
|
55 |
+
top_k=top_k,
|
56 |
+
top_p=top_p,
|
57 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
58 |
+
num_return_sequences=num_return_sequences,
|
59 |
+
pad_token_id=tokenizer.eos_token_id, # Ensure padding is correct
|
60 |
+
do_sample=True # Ensure sampling happens.
|
61 |
+
)
|
62 |
+
|
63 |
+
generated_texts = []
|
64 |
+
for i in range(outputs.shape[0]):
|
65 |
+
generated_text = tokenizer.decode(outputs[i], skip_special_tokens=True)
|
66 |
+
generated_texts.append(generated_text)
|
67 |
+
|
68 |
+
return "\n\n".join(generated_texts)
|
69 |
+
except Exception as e:
|
70 |
+
return f"Error during generation: {e}"
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# --- Gradio Interface ---
|
75 |
+
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# Text Generation with kakaocorp/kanana-nano-2.1b-base")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column():
|
81 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
82 |
+
with gr.Accordion("Generation Parameters", open=False):
|
83 |
+
max_length_slider = gr.Slider(label="Max Length", minimum=10, maximum=512, value=50, step=1)
|
84 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
85 |
+
top_k_slider = gr.Slider(label="Top K", minimum=0, maximum=100, value=50, step=1)
|
86 |
+
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=1.0, step=0.05)
|
87 |
+
no_repeat_ngram_size_slider = gr.Slider(label="No Repeat N-gram Size", minimum=0, maximum=10, value=0, step=1) # Add the slider
|
88 |
+
num_return_sequences_slider = gr.Slider(label="Number of Return Sequences", minimum=1, maximum=5, value=1, step=1)
|
89 |
+
|
90 |
+
generate_button = gr.Button("Generate")
|
91 |
+
|
92 |
+
with gr.Column():
|
93 |
+
output_text = gr.Textbox(label="Generated Text", readonly=True)
|
94 |
+
|
95 |
+
generate_button.click(
|
96 |
+
generate_text,
|
97 |
+
inputs=[
|
98 |
+
prompt_input,
|
99 |
+
max_length_slider,
|
100 |
+
temperature_slider,
|
101 |
+
top_k_slider,
|
102 |
+
top_p_slider,
|
103 |
+
no_repeat_ngram_size_slider,
|
104 |
+
num_return_sequences_slider
|
105 |
+
],
|
106 |
+
outputs=output_text,
|
107 |
+
)
|
108 |
+
|
109 |
+
demo.launch(share=True)
|