Spaces:
Sleeping
Sleeping
File size: 4,046 Bytes
2b3cd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import pandas as pd
import gradio as gr
import openai
from datetime import datetime
# OpenAI API ํด๋ผ์ด์ธํธ ์ค์
openai.api_key = os.getenv("OPENAI_API_KEY")
# LLM ํธ์ถ ํจ์
def call_api(content, system_message="๋ฆฌ๋ทฐ๋ฅผ ๋ถ์ํ์ฌ ์์ฝํด ์ฃผ์ธ์.", max_tokens=200, temperature=0.7, top_p=0.9):
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": content},
],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message['content']
# ์์
๋ฐ์ดํฐ ์ฝ๊ธฐ ํจ์
def read_excel_data(file):
df = pd.read_excel(file, usecols="A, B, C, D, E", skiprows=1,
names=["ID", "Review Date", "Option", "Review", "ReviewScore"], engine='openpyxl')
df['Review Date'] = pd.to_datetime(df['Review Date']).dt.tz_localize(None).dt.date
df['Year'] = df['Review Date'].astype(str).str.slice(0, 4)
df['Option1'] = df['Option'].astype(str).str.split(" / ").str[0]
df['Review Length'] = df['Review'].str.len()
return df
# ๊ธ์ ์ ์ธ ๋ฆฌ๋ทฐ๋ฅผ ๋ฐํํ๋ ํจ์
def get_positive_reviews(df):
positive_reviews = df[df['ReviewScore'] >= 4].sort_values(by='Review Length', ascending=False)
positive_reviews = positive_reviews.head(20)
positive_reviews.reset_index(drop=True, inplace=True)
positive_reviews.index += 1
positive_reviews['์๋ฒ'] = positive_reviews.index
positive_output = "\n\n".join(positive_reviews.apply(
lambda x: f"{x['์๋ฒ']}. **{x['Review Date']} / {x['ID']} / {x['Option']}**\n\n{x['Review']}", axis=1))
analysis = call_api(positive_output)
return positive_output, analysis
# ๋ถ์ ์ ์ธ ๋ฆฌ๋ทฐ๋ฅผ ๋ฐํํ๋ ํจ์
def get_negative_reviews(df):
negative_reviews = df[df['ReviewScore'] <= 2].sort_values(by='Review Length', ascending=False)
negative_reviews = negative_reviews.head(30)
negative_reviews.reset_index(drop=True, inplace=True)
negative_reviews.index += 1
negative_reviews['์๋ฒ'] = negative_reviews.index
negative_output = "\n\n".join(negative_reviews.apply(
lambda x: f"{x['์๋ฒ']}. **{x['Review Date']} / {x['ID']} / {x['Option']}**\n\n{x['Review']}", axis=1))
analysis = call_api(negative_output)
return negative_output, analysis
# ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ๋ฅผ ์ฒ๋ฆฌํ์ฌ ๊ธ์ ๋ฐ ๋ถ์ ๋ฆฌ๋ทฐ๋ฅผ ์ถ์ถํ๋ ํจ์
def process_reviews(file):
df = read_excel_data(file)
positive_reviews, positive_analysis = get_positive_reviews(df)
negative_reviews, negative_analysis = get_negative_reviews(df)
return positive_reviews, positive_analysis, negative_reviews, negative_analysis
# Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("### ๋ฆฌ๋ทฐ ๋ฐ์ดํฐ ์
๋ก๋ ๋ฐ ๋ถ์")
file_input = gr.File(label="์์
ํ์ผ ์
๋ก๋", file_types=[".xlsx"])
analyze_button = gr.Button("๋ฆฌ๋ทฐ๋ถ์")
with gr.Column():
gr.Markdown("### ๊ธ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ (์ต๋ 20๊ฐ)")
positive_reviews_output = gr.Textbox(label="๊ธ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ", interactive=False, lines=20)
positive_analysis_output = gr.Textbox(label="๊ธ์ ๋ฆฌ๋ทฐ ๋ถ์ ๊ฒฐ๊ณผ", interactive=False, lines=5)
gr.Markdown("### ๋ถ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ (์ต๋ 30๊ฐ)")
negative_reviews_output = gr.Textbox(label="๋ถ์ ์ ์ธ ์ฃผ์ ๋ฆฌ๋ทฐ", interactive=False, lines=30)
negative_analysis_output = gr.Textbox(label="๋ถ์ ๋ฆฌ๋ทฐ ๋ถ์ ๊ฒฐ๊ณผ", interactive=False, lines=5)
analyze_button.click(
fn=process_reviews,
inputs=[file_input],
outputs=[positive_reviews_output, positive_analysis_output, negative_reviews_output, negative_analysis_output]
)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch()
|