Update app.py
Browse files
app.py
CHANGED
|
@@ -51,7 +51,7 @@ class EmbeddingModel:
|
|
| 51 |
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
| 52 |
|
| 53 |
@spaces.GPU
|
| 54 |
-
def compute_embeddings(selected_task, input_text
|
| 55 |
max_length = 2042
|
| 56 |
task_description = tasks[selected_task]
|
| 57 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
|
@@ -69,17 +69,22 @@ class EmbeddingModel:
|
|
| 69 |
@spaces.GPU
|
| 70 |
def compute_similarity(self, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# Compute cosine similarity
|
| 81 |
-
similarity1 = F.cosine_similarity(
|
| 82 |
-
similarity2 = F.cosine_similarity(
|
|
|
|
| 83 |
return similarity1, similarity2
|
| 84 |
|
| 85 |
|
|
@@ -92,20 +97,19 @@ def app_interface():
|
|
| 92 |
|
| 93 |
with gr.Tab("Embedding Generation"):
|
| 94 |
input_text_box = gr.Textbox(label="📖Input Text")
|
| 95 |
-
system_prompt_box = gr.Textbox(label="🤖System Prompt (Optional)")
|
| 96 |
compute_button = gr.Button("Try🐣🛌🏻e5")
|
| 97 |
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
|
| 98 |
compute_button.click(
|
| 99 |
fn=EmbeddingModel.compute_embeddings,
|
| 100 |
-
inputs=[task_dropdown, input_text_box
|
| 101 |
outputs=output_display
|
| 102 |
)
|
| 103 |
|
| 104 |
with gr.Tab("Sentence Similarity"):
|
| 105 |
-
sentence1_box = gr.Textbox(label="Sentence
|
| 106 |
-
sentence2_box = gr.Textbox(label="Sentence
|
| 107 |
-
extra_sentence1_box = gr.Textbox(label="Sentence
|
| 108 |
-
extra_sentence2_box = gr.Textbox(label="Sentence
|
| 109 |
similarity_button = gr.Button("Compute Similarity")
|
| 110 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
| 111 |
similarity_button.click(
|
|
@@ -116,7 +120,6 @@ def app_interface():
|
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column():
|
| 119 |
-
system_prompt_box
|
| 120 |
input_text_box
|
| 121 |
with gr.Column():
|
| 122 |
compute_button
|
|
|
|
| 51 |
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
| 52 |
|
| 53 |
@spaces.GPU
|
| 54 |
+
def compute_embeddings(selected_task, input_text):
|
| 55 |
max_length = 2042
|
| 56 |
task_description = tasks[selected_task]
|
| 57 |
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
|
|
|
| 69 |
@spaces.GPU
|
| 70 |
def compute_similarity(self, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
| 71 |
|
| 72 |
+
# Compute embeddings for each sentence
|
| 73 |
+
embeddings1 = compute_embeddings(self.selected_task, sentence1)
|
| 74 |
+
embeddings2 = compute_embeddings(self.selected_task, sentence2)
|
| 75 |
+
embeddings3 = compute_embeddings(self.selected_task, extra_sentence1)
|
| 76 |
+
embeddings4 = compute_embeddings(self.selected_task, extra_sentence2)
|
| 77 |
+
|
| 78 |
+
# Convert embeddings to tensors
|
| 79 |
+
embeddings_tensor1 = torch.tensor(embeddings1).to(device)
|
| 80 |
+
embeddings_tensor2 = torch.tensor(embeddings2).to(device)
|
| 81 |
+
embeddings_tensor3 = torch.tensor(embeddings3).to(device)
|
| 82 |
+
embeddings_tensor4 = torch.tensor(embeddings4).to(device)
|
| 83 |
+
|
| 84 |
# Compute cosine similarity
|
| 85 |
+
similarity1 = F.cosine_similarity(embeddings_tensor1, embeddings_tensor2).item()
|
| 86 |
+
similarity2 = F.cosine_similarity(embeddings_tensor1, embeddings_tensor3).item()
|
| 87 |
+
similarity3 = F.cosine_similarity(embeddings_tensor1, embeddings_tensor4).item()
|
| 88 |
return similarity1, similarity2
|
| 89 |
|
| 90 |
|
|
|
|
| 97 |
|
| 98 |
with gr.Tab("Embedding Generation"):
|
| 99 |
input_text_box = gr.Textbox(label="📖Input Text")
|
|
|
|
| 100 |
compute_button = gr.Button("Try🐣🛌🏻e5")
|
| 101 |
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
|
| 102 |
compute_button.click(
|
| 103 |
fn=EmbeddingModel.compute_embeddings,
|
| 104 |
+
inputs=[task_dropdown, input_text_box],
|
| 105 |
outputs=output_display
|
| 106 |
)
|
| 107 |
|
| 108 |
with gr.Tab("Sentence Similarity"):
|
| 109 |
+
sentence1_box = gr.Textbox(label="'Focus Sentence' - The 'Subject'")
|
| 110 |
+
sentence2_box = gr.Textbox(label="'Input Sentence' - 1")
|
| 111 |
+
extra_sentence1_box = gr.Textbox(label="'Input Sentence' - 2")
|
| 112 |
+
extra_sentence2_box = gr.Textbox(label="'Input Sentence' - 3")
|
| 113 |
similarity_button = gr.Button("Compute Similarity")
|
| 114 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
| 115 |
similarity_button.click(
|
|
|
|
| 120 |
|
| 121 |
with gr.Row():
|
| 122 |
with gr.Column():
|
|
|
|
| 123 |
input_text_box
|
| 124 |
with gr.Column():
|
| 125 |
compute_button
|