Spaces:
Sleeping
Sleeping
Update models.py
Browse files
models.py
CHANGED
@@ -20,7 +20,7 @@ class Models():
|
|
20 |
|
21 |
ner_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float16, offload_folder="offload", offload_state_dict = True)
|
22 |
tokenizer = AutoTokenizer.from_pretrained("Universal-NER/UniNER-7B-all", use_fast=False, padding="max_length")
|
23 |
-
|
24 |
"text-generation", #task
|
25 |
model=ner_model,
|
26 |
max_length=1000,
|
@@ -31,7 +31,7 @@ class Models():
|
|
31 |
num_return_sequences=1
|
32 |
)
|
33 |
|
34 |
-
self.llm = HuggingFacePipeline(
|
35 |
self.prompt = PromptTemplate(template=self.template, input_variables=["input_text","entity_type"])
|
36 |
self.llm_chain = LLMChain(prompt=self.prompt, llm=self.llm)
|
37 |
|
|
|
20 |
|
21 |
ner_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float16, offload_folder="offload", offload_state_dict = True)
|
22 |
tokenizer = AutoTokenizer.from_pretrained("Universal-NER/UniNER-7B-all", use_fast=False, padding="max_length")
|
23 |
+
hf_pipeline = pipeline(
|
24 |
"text-generation", #task
|
25 |
model=ner_model,
|
26 |
max_length=1000,
|
|
|
31 |
num_return_sequences=1
|
32 |
)
|
33 |
|
34 |
+
self.llm = HuggingFacePipeline(hf_pipeline, model_kwargs = {'temperature':0})
|
35 |
self.prompt = PromptTemplate(template=self.template, input_variables=["input_text","entity_type"])
|
36 |
self.llm_chain = LLMChain(prompt=self.prompt, llm=self.llm)
|
37 |
|