Commit
·
462d118
1
Parent(s):
c839698
Add application file
Browse files- .gitattributes +2 -0
- app.py +46 -0
- model.ckpt +3 -0
- model.py +167 -0
- requirements.txt +0 -0
- sample_audio.wav +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchaudio
|
2 |
+
import torch
|
3 |
+
from model import M11
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
model_PATH = "./model.ckpt"
|
8 |
+
|
9 |
+
classifier = M11.load_from_checkpoint(model_PATH)
|
10 |
+
classifier.eval()
|
11 |
+
|
12 |
+
def preprocess(signal, sr, device):
|
13 |
+
# resampling the audio signal with the training sample rate
|
14 |
+
if sr != 8_000:
|
15 |
+
resampler = torchaudio.transforms.Resample(sr, 8_000).to(device)
|
16 |
+
signal = resampler(signal)
|
17 |
+
# turning the stereo signals into mono
|
18 |
+
if signal.shape[0] > 1:
|
19 |
+
signal = torch.mean(signal, dim=0, keepdim=True)
|
20 |
+
|
21 |
+
return signal
|
22 |
+
|
23 |
+
def get_likely_index(tensor):
|
24 |
+
# find most likely label index for each element in the batch
|
25 |
+
return tensor.argmax(dim=-1)
|
26 |
+
|
27 |
+
def pipeline(input):
|
28 |
+
# print('gere')
|
29 |
+
# print(input)
|
30 |
+
sample_rate, audio = input
|
31 |
+
processed_audio = preprocess(torch.from_numpy(audio), sample_rate, DEVICE)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
pred = get_likely_index(classifier(processed_audio.unsqueeze(0))).view(-1)
|
35 |
+
# out_prob, score, index, text_lab = classifier.classify_file(aud.name)
|
36 |
+
return pred[0]
|
37 |
+
|
38 |
+
inputs = gr.inputs.Audio(label="Input Audio", type="numpy")
|
39 |
+
outputs = "text"
|
40 |
+
title = "Threat Detection From Bengali Voice Calls"
|
41 |
+
description = "Gradio demo for Audio Classification, simply upload your audio, or click one of the examples to load them. Read more at the links below."
|
42 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.07143' target='_blank'>ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification</a> | <a href='https://github.com/speechbrain/speechbrain' target='_blank'>Github Repo</a></p>"
|
43 |
+
examples = [
|
44 |
+
['sample_audio.wav']
|
45 |
+
]
|
46 |
+
gr.Interface(pipeline, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
|
model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abbf473f2a6445c3d4964c0fa0deb67a70d246149013d1bd42c7a64e60b9f8fe
|
3 |
+
size 23819567
|
model.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import torchaudio
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
from torchmetrics import Accuracy, F1, Precision, Recall
|
7 |
+
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
class M11(pl.LightningModule):
|
12 |
+
def __init__(self, hidden_units_1, hidden_units_2, dropout_1, dropout_2, n_input=1, n_output=3, stride=4, n_channel=64, lr=1e-3, l2=1e-5):
|
13 |
+
super().__init__()
|
14 |
+
self.save_hyperparameters()
|
15 |
+
|
16 |
+
|
17 |
+
self.conv1 = nn.Conv1d(n_input, n_channel, kernel_size=80, stride=stride)
|
18 |
+
self.bn1 = nn.BatchNorm1d(n_channel)
|
19 |
+
self.pool1 = nn.MaxPool1d(4)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv1d(n_channel, n_channel, kernel_size=3,padding=1)
|
22 |
+
self.bn2 = nn.BatchNorm1d(n_channel)
|
23 |
+
self.conv3 = nn.Conv1d(n_channel, n_channel, kernel_size=3,padding=1)
|
24 |
+
self.bn3 = nn.BatchNorm1d(n_channel)
|
25 |
+
self.pool2 = nn.MaxPool1d(4)
|
26 |
+
|
27 |
+
self.conv4 = nn.Conv1d(n_channel, 2 * n_channel, kernel_size=3,padding=1)
|
28 |
+
self.bn4 = nn.BatchNorm1d(2 * n_channel)
|
29 |
+
self.conv5 = nn.Conv1d(2 * n_channel, 2 * n_channel, kernel_size=3,padding=1)
|
30 |
+
self.bn5 = nn.BatchNorm1d(2 * n_channel)
|
31 |
+
self.pool3 = nn.MaxPool1d(4)
|
32 |
+
|
33 |
+
self.conv6 = nn.Conv1d(2 * n_channel, 4 * n_channel, kernel_size=3,padding=1)
|
34 |
+
self.bn6 = nn.BatchNorm1d(4 * n_channel)
|
35 |
+
self.conv7 = nn.Conv1d(4 * n_channel, 4 * n_channel, kernel_size=3,padding=1)
|
36 |
+
self.bn7 = nn.BatchNorm1d(4 * n_channel)
|
37 |
+
self.conv8 = nn.Conv1d(4 * n_channel, 4 * n_channel, kernel_size=3,padding=1)
|
38 |
+
self.bn8 = nn.BatchNorm1d(4 * n_channel)
|
39 |
+
self.pool4 = nn.MaxPool1d(4)
|
40 |
+
|
41 |
+
self.conv9 = nn.Conv1d(4 * n_channel, 8 * n_channel, kernel_size=3,padding=1)
|
42 |
+
self.bn9 = nn.BatchNorm1d(8 * n_channel)
|
43 |
+
self.conv10 = nn.Conv1d(8 * n_channel, 8 * n_channel, kernel_size=3,padding=1)
|
44 |
+
self.bn10 = nn.BatchNorm1d(8 * n_channel)
|
45 |
+
|
46 |
+
# self.fc1 = nn.Linear(8 * n_channel, n_output)
|
47 |
+
self.mlp = nn.Sequential(
|
48 |
+
nn.Linear(8 * n_channel, hidden_units_1),
|
49 |
+
nn.ReLU(),
|
50 |
+
nn.Dropout(dropout_1),
|
51 |
+
nn.Linear(hidden_units_1, hidden_units_2),
|
52 |
+
nn.ReLU(),
|
53 |
+
nn.Dropout(dropout_2),
|
54 |
+
nn.Linear(hidden_units_2, n_output)
|
55 |
+
)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.conv1(x)
|
59 |
+
x = F.relu(self.bn1(x))
|
60 |
+
x = self.pool1(x)
|
61 |
+
|
62 |
+
x = self.conv2(x)
|
63 |
+
x = F.relu(self.bn2(x))
|
64 |
+
x = self.conv3(x)
|
65 |
+
x = F.relu(self.bn3(x))
|
66 |
+
x = self.pool2(x)
|
67 |
+
|
68 |
+
x = self.conv4(x)
|
69 |
+
x = F.relu(self.bn4(x))
|
70 |
+
x = self.conv5(x)
|
71 |
+
x = F.relu(self.bn5(x))
|
72 |
+
x = self.pool3(x)
|
73 |
+
|
74 |
+
x = self.conv6(x)
|
75 |
+
x = F.relu(self.bn6(x))
|
76 |
+
x = self.conv7(x)
|
77 |
+
x = F.relu(self.bn7(x))
|
78 |
+
x = self.conv8(x)
|
79 |
+
x = F.relu(self.bn8(x))
|
80 |
+
x = self.pool4(x)
|
81 |
+
|
82 |
+
x = self.conv9(x)
|
83 |
+
x = F.relu(self.bn9(x))
|
84 |
+
x = self.conv10(x)
|
85 |
+
x = F.relu(self.bn10(x))
|
86 |
+
|
87 |
+
x = F.avg_pool1d(x, x.shape[-1])
|
88 |
+
x = x.permute(0, 2, 1)
|
89 |
+
# x = self.fc1(x)
|
90 |
+
x = self.mlp(x)
|
91 |
+
return F.log_softmax(x, dim=2)
|
92 |
+
|
93 |
+
def training_step(self, batch, batch_idx):
|
94 |
+
# Very simple training loop
|
95 |
+
data, target = batch
|
96 |
+
logits = self(data) # this calls self.forward
|
97 |
+
preds = torch.argmax(logits, dim=-1).squeeze()
|
98 |
+
# loss = cost(logits.squeeze(), target)
|
99 |
+
loss = unweighted_cost(logits.squeeze(), target)
|
100 |
+
|
101 |
+
f1 = f1_metric(preds, target)
|
102 |
+
|
103 |
+
self.log('train_loss', loss, on_epoch=True, prog_bar=True)
|
104 |
+
self.log('train_f1', f1, on_epoch=True, prog_bar=True)
|
105 |
+
return loss
|
106 |
+
|
107 |
+
def validation_step(self, batch, batch_idx):
|
108 |
+
data, target = batch
|
109 |
+
logits = self(data)
|
110 |
+
preds = torch.argmax(logits, dim=-1).squeeze()
|
111 |
+
# loss = val_cost(logits.squeeze(), target)
|
112 |
+
loss = unweighted_cost(logits.squeeze(), target)
|
113 |
+
|
114 |
+
acc = accuracy(preds, target)
|
115 |
+
f1 = f1_metric(preds, target)
|
116 |
+
prec = precision(preds, target)
|
117 |
+
rec = recall(preds, target)
|
118 |
+
|
119 |
+
self.log('val_loss', loss, on_epoch=True, prog_bar=True)
|
120 |
+
self.log('val_acc', acc, on_epoch=True, prog_bar=True)
|
121 |
+
self.log('val_f1', f1, on_epoch=True, prog_bar=True)
|
122 |
+
self.log('val_precision', prec, on_epoch=True, prog_bar=True)
|
123 |
+
self.log('val_recall', rec, on_epoch=True, prog_bar=True)
|
124 |
+
return loss, acc, f1, prec, rec
|
125 |
+
|
126 |
+
def configure_optimizers(self):
|
127 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=self.hparams.l2)
|
128 |
+
return optimizer
|
129 |
+
|
130 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
131 |
+
# model_PATH = "./model.ckpt"
|
132 |
+
# audio_PATH = "./sample_audio.wav"
|
133 |
+
|
134 |
+
|
135 |
+
# def _resample_if_necessary(signal, sr, device):
|
136 |
+
# if sr != 8_000:
|
137 |
+
# resampler = torchaudio.transforms.Resample(sr, 8_000).to(device)
|
138 |
+
# signal = resampler(signal)
|
139 |
+
|
140 |
+
# return signal
|
141 |
+
|
142 |
+
# def _mix_down_if_necessary(signal):
|
143 |
+
# if signal.shape[0] > 1:
|
144 |
+
# signal = torch.mean(signal, dim=0, keepdim=True)
|
145 |
+
|
146 |
+
# return signal
|
147 |
+
|
148 |
+
# def get_likely_index(tensor):
|
149 |
+
# # find most likely label index for each element in the batch
|
150 |
+
# return tensor.argmax(dim=-1)
|
151 |
+
|
152 |
+
# model = M11.load_from_checkpoint(model_PATH).to(DEVICE)
|
153 |
+
# model.eval()
|
154 |
+
|
155 |
+
# audio, sr = torchaudio.load(audio_PATH)
|
156 |
+
# # resampler = torchaudio.transforms.Resample(sr, 8_000).to(DEVICE)
|
157 |
+
# processed_audio = _mix_down_if_necessary(_resample_if_necessary(audio, sr, DEVICE))
|
158 |
+
|
159 |
+
# print(processed_audio.shape)
|
160 |
+
# with torch.no_grad():
|
161 |
+
# pred = get_likely_index(model(processed_audio.unsqueeze(0).to(DEVICE))).view(-1)
|
162 |
+
|
163 |
+
# # y_true = target.tolist()
|
164 |
+
# # y_pred = pred.tolist()
|
165 |
+
# # target_names = eval_dataset.label_list
|
166 |
+
# # print(classification_report(y_true, y_pred, target_names=target_names))
|
167 |
+
# print(pred)
|
requirements.txt
ADDED
Binary file (346 Bytes). View file
|
|
sample_audio.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:128ba5b5859c973da88c762ac33c9790b1e722e7ef84fbfc4af6fa22cd4ac4d9
|
3 |
+
size 10905126
|