Spaces:
Sleeping
Sleeping
pip install transformers | |
from transformers import pipeline | |
import gradio as gr | |
pipe_ar = pipeline("question-answering",model='ZeyadAhmed/AraElectra-Arabic-SQuADv2-QA') # arabic model | |
pipe_en = pipeline("question-answering",model='deepset/roberta-base-squad2') # english model | |
def q_a(lang,text,question): | |
if lang == 'Arabic': # if user select arabic | |
myinput = { | |
'question': question, | |
'context':text | |
} | |
return pipe_ar(myinput)['answer'] # here will use pipe_ar which is the arabic model and return the answer | |
elif lang == 'English': # user select english | |
myinput = { | |
'question': question, | |
'context':text | |
} | |
return pipe_en(myinput)['answer'] #use english model | |
app = gr.Interface( | |
fn= q_a, | |
inputs=[gr.Radio(['Arabic', 'English'], label='Select Language',value= 'Arabic'), # radio bottom for select the language and the defult languses will be arabic | |
gr.Textbox(label = 'enter text',lines=10),# text box to enter the context | |
gr.Textbox(label = 'enter question')],# text box for enter the question | |
outputs=gr.Textbox(label = 'answer')# the output will display here | |
) | |
app.launch() |