Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import av
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoImageProcessor, AutoModelForVideoClassification
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def read_video_pyav(container, indices):
|
| 10 |
+
'''
|
| 11 |
+
Decode the video with PyAV decoder.
|
| 12 |
+
Args:
|
| 13 |
+
container (`av.container.input.InputContainer`): PyAV container.
|
| 14 |
+
indices (`List[int]`): List of frame indices to decode.
|
| 15 |
+
Returns:
|
| 16 |
+
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
| 17 |
+
'''
|
| 18 |
+
frames = []
|
| 19 |
+
container.seek(0)
|
| 20 |
+
start_index = indices[0]
|
| 21 |
+
end_index = indices[-1]
|
| 22 |
+
for i, frame in enumerate(container.decode(video=0)):
|
| 23 |
+
if i > end_index:
|
| 24 |
+
break
|
| 25 |
+
if i >= start_index and i in indices:
|
| 26 |
+
frames.append(frame)
|
| 27 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
| 31 |
+
'''
|
| 32 |
+
Sample a given number of frame indices from the video.
|
| 33 |
+
Args:
|
| 34 |
+
clip_len (`int`): Total number of frames to sample.
|
| 35 |
+
frame_sample_rate (`int`): Sample every n-th frame.
|
| 36 |
+
seg_len (`int`): Maximum allowed index of sample's last frame.
|
| 37 |
+
Returns:
|
| 38 |
+
indices (`List[int]`): List of sampled frame indices
|
| 39 |
+
'''
|
| 40 |
+
converted_len = int(clip_len * frame_sample_rate)
|
| 41 |
+
end_idx = np.random.randint(converted_len, seg_len)
|
| 42 |
+
start_idx = end_idx - converted_len
|
| 43 |
+
indices = np.linspace(start_idx, end_idx, num=clip_len)
|
| 44 |
+
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
| 45 |
+
return indices
|
| 46 |
+
|
| 47 |
+
# def sample_frame_indices2(clip_len, frame_sample_rate, seg_len):
|
| 48 |
+
# '''
|
| 49 |
+
# Description
|
| 50 |
+
# Args:
|
| 51 |
+
# Returns:
|
| 52 |
+
# indices (`List[int]`): List of sampled frame indices
|
| 53 |
+
# '''
|
| 54 |
+
# return
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def classify(model_maneuver,model_Surf_notSurf,file):
|
| 59 |
+
container = av.open(file)
|
| 60 |
+
|
| 61 |
+
# sample 16 frames
|
| 62 |
+
indices = sample_frame_indices(clip_len=16, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
|
| 63 |
+
video = read_video_pyav(container, indices)
|
| 64 |
+
|
| 65 |
+
inputs = image_processor(list(video), return_tensors="pt")
|
| 66 |
+
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
outputs = model_Surf_notSurf(**inputs)
|
| 69 |
+
logits = outputs.logits
|
| 70 |
+
|
| 71 |
+
predicted_label = logits.argmax(-1).item()
|
| 72 |
+
print(model_Surf_notSurf.config.id2label[predicted_label])
|
| 73 |
+
|
| 74 |
+
if model_Surf_notSurf.config.id2label[predicted_label]!='Surfing':
|
| 75 |
+
return model_Surf_notSurf.config.id2label[predicted_label]
|
| 76 |
+
else:
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model_maneuver(**inputs)
|
| 79 |
+
logits = outputs.logits
|
| 80 |
+
|
| 81 |
+
predicted_label = logits.argmax(-1).item()
|
| 82 |
+
print(model_maneuver.config.id2label[predicted_label])
|
| 83 |
+
# st.write(f'Les labels: {model_maneuver.config.id2label}')
|
| 84 |
+
# st.write(f'répartiton des probilités {logits}')
|
| 85 |
+
# st.write(f'répartiton des probilités {nn.Softmax(dim=-1)(logits)}')
|
| 86 |
+
|
| 87 |
+
return model_maneuver.config.id2label[predicted_label]
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
model_maneuver = '2nzi/videomae-surf-analytics'
|
| 91 |
+
model_Surf_notSurf = '2nzi/videomae-surf-analytics-surfNOTsurf'
|
| 92 |
+
# pipe = pipeline("video-classification", model="2nzi/videomae-surf-analytics")
|
| 93 |
+
image_processor = AutoImageProcessor.from_pretrained(model_maneuver)
|
| 94 |
+
model_maneuver = AutoModelForVideoClassification.from_pretrained(model_maneuver)
|
| 95 |
+
model_Surf_notSurf = AutoModelForVideoClassification.from_pretrained(model_Surf_notSurf)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
st.subheader("Surf Analytics")
|
| 102 |
+
|
| 103 |
+
st.markdown("""
|
| 104 |
+
Bienvenue sur le projet Surf Analytics réalisé par Walid, Guillaume, Valentine, et Antoine.
|
| 105 |
+
|
| 106 |
+
<a href="https://github.com/2nzi/M09-FinalProject-Surf-Analytics" style="text-decoration: none;">@Surf-Analytics-Github</a>.
|
| 107 |
+
""", unsafe_allow_html=True)
|
| 108 |
+
|
| 109 |
+
st.title("Surf Maneuver Classification")
|
| 110 |
+
|
| 111 |
+
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
| 112 |
+
|
| 113 |
+
if uploaded_file is not None:
|
| 114 |
+
video_bytes = uploaded_file.read()
|
| 115 |
+
st.video(video_bytes)
|
| 116 |
+
predicted_label = classify(model_maneuver,model_Surf_notSurf,uploaded_file)
|
| 117 |
+
st.success(f"Predicted Label: {predicted_label}")
|