khaiphan29 commited on
Commit
0b5f433
·
1 Parent(s): f20afb2

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. main.py +2 -2
  2. src/myNLI.py +3 -3
main.py CHANGED
@@ -1,7 +1,7 @@
1
  #uvicorn main:app --reload
2
  import os
3
  os.environ['HF_HOME'] = 'src/cache'
4
- os.environ['TRANSFORMERS_CACHE'] = 'src/cache'
5
 
6
  from fastapi import FastAPI, status
7
  from fastapi.responses import Response, JSONResponse
@@ -10,7 +10,7 @@ from pydantic import BaseModel
10
  from typing import List
11
 
12
  import os
13
- import json
14
  import time
15
 
16
  from src.myNLI import FactChecker
 
1
  #uvicorn main:app --reload
2
  import os
3
  os.environ['HF_HOME'] = 'src/cache'
4
+ # os.environ['TRANSFORMERS_CACHE'] = 'src/cache'
5
 
6
  from fastapi import FastAPI, status
7
  from fastapi.responses import Response, JSONResponse
 
10
  from typing import List
11
 
12
  import os
13
+ # import json
14
  import time
15
 
16
  from src.myNLI import FactChecker
src/myNLI.py CHANGED
@@ -1,5 +1,5 @@
1
  import torch
2
- from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
3
  from sentence_transformers import SentenceTransformer, util
4
  import nltk
5
 
@@ -26,8 +26,8 @@ class FactChecker:
26
  self.envir = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
27
 
28
  # Load LLM
29
- self.tokenizer = AutoTokenizer.from_pretrained("MoritzLaurer/mDeBERTa-v3-base-mnli-xnli", use_auth_token=False) # LOAD mDEBERTa TOKENIZER
30
- self.mDeBertaModel = AutoModel.from_pretrained(f"src/mDeBERTa (ft) V6/mDeBERTa-v3-base-mnli-xnli-{self.INPUT_TYPE}", use_auth_token=False) # LOAD FINETUNED MODEL
31
  # Load classifier model
32
  self.checkpoints = torch.load(f"src/mDeBERTa (ft) V6/{self.INPUT_TYPE}.pt", map_location=self.envir)
33
 
 
1
  import torch
2
+ from transformers import AutoModel, AutoTokenizer
3
  from sentence_transformers import SentenceTransformer, util
4
  import nltk
5
 
 
26
  self.envir = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
27
 
28
  # Load LLM
29
+ self.tokenizer = AutoTokenizer.from_pretrained("MoritzLaurer/mDeBERTa-v3-base-mnli-xnli", token=False) # LOAD mDEBERTa TOKENIZER
30
+ self.mDeBertaModel = AutoModel.from_pretrained(f"src/mDeBERTa (ft) V6/mDeBERTa-v3-base-mnli-xnli-{self.INPUT_TYPE}", token=False) # LOAD FINETUNED MODEL
31
  # Load classifier model
32
  self.checkpoints = torch.load(f"src/mDeBERTa (ft) V6/{self.INPUT_TYPE}.pt", map_location=self.envir)
33