import streamlit as st import torch from transformers import AutoProcessor, UdopForConditionalGeneration # from datasets import load_dataset # processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=True) # model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large") st.title("CIC Demo (by ITT)") st.write("Select or upload a document (/an image) to test the model.") # File selection uploaded_files = st.file_uploader("Upload document(s) [/image(s)]:", type=["docx", "pdf", "pptx", "jpg", "jpeg", "png"], accept_multiple_files=True) selected_file = st.selectbox("Select a document (/an image):", uploaded_files, format_func=lambda file: file.name if file else "None") # Display selected file if selected_file is not None and selected_file != "None": file_extension = selected_file.name.split(".")[-1] if file_extension in ["jpg", "jpeg", "png"]: st.image(selected_file, caption="Selected Image") else: st.write("Selected file: ", selected_file.name) # Model testing button testButton = st.button("Test Model") if testButton and selected_file != "None": st.write("Testing the model with the selected image...") elif testButton and selected_file == "None": st.write("Please upload and select an image.") # encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") # predicted_ids = model.generate(**encoding) # print(processor.batch_decode(predicted_ids, skip_special_tokens=True)[0])