kh-CHEUNG commited on
Commit
a6ff839
·
verified ·
1 Parent(s): 248b38d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py CHANGED
@@ -5,6 +5,40 @@ from datasets import load_dataset
5
  processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=True)
6
  model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  # encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
9
 
10
  # predicted_ids = model.generate(**encoding)
 
5
  processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=True)
6
  model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
7
 
8
+ st.title("Image Selection and Upload")
9
+ st.write("Select or upload an image to test the model.")
10
+
11
+ # Image selection
12
+ image_option = st.selectbox("Select an image:", ("Image 1", "Image 2", "Image 3"))
13
+ if image_option == "Image 1":
14
+ st.image("image1.jpg", caption="Image 1")
15
+ elif image_option == "Image 2":
16
+ st.image("image2.jpg", caption="Image 2")
17
+ elif image_option == "Image 3":
18
+ st.image("image3.jpg", caption="Image 3")
19
+
20
+ # Image upload
21
+ uploaded_file = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])
22
+ if uploaded_file is not None:
23
+ st.image(uploaded_file, caption="Uploaded Image")
24
+
25
+ # Model testing button
26
+ if st.button("Test Model"):
27
+ if image_option == "Image 1":
28
+ # Test the model with Image 1
29
+ st.write("Testing the model with Image 1...")
30
+ elif image_option == "Image 2":
31
+ # Test the model with Image 2
32
+ st.write("Testing the model with Image 2...")
33
+ elif image_option == "Image 3":
34
+ # Test the model with Image 3
35
+ st.write("Testing the model with Image 3...")
36
+ elif uploaded_file is not None:
37
+ # Test the model with the uploaded image
38
+ st.write("Testing the model with the uploaded image...")
39
+ else:
40
+ st.write("Please select or upload an image.")
41
+
42
  # encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
43
 
44
  # predicted_ids = model.generate(**encoding)