kevynswhants commited on
Commit
3e3f8b6
·
1 Parent(s): 5bd1eec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -8
app.py CHANGED
@@ -3,8 +3,15 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
 
 
 
 
 
 
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -14,7 +21,10 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
 
 
 
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -27,9 +37,18 @@ def translate(audio):
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
 
 
 
 
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
@@ -43,7 +62,6 @@ title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -69,4 +87,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import (
7
+ SpeechT5ForTextToSpeech,
8
+ SpeechT5HifiGan,
9
+ SpeechT5Processor,
10
+ VitsModel,
11
+ VitsTokenizer,
12
+ pipeline
13
+ )
14
+ from transformers import VitsModel, VitsTokenizer
15
 
16
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
17
 
 
21
  # load text-to-speech checkpoint and speaker embeddings
22
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
23
 
24
+ # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
25
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
26
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")
27
+
28
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
29
 
30
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
37
 
38
 
39
  def synthesise(text):
40
+ # inputs = processor(text=text, return_tensors="pt")
41
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
42
+ # speech = speech.cpu()
43
+
44
+ inputs = tokenizer(text, return_tensors="pt")
45
+ input_ids = inputs["input_ids"]
46
+
47
+ with torch.no_grad():
48
+ outputs = model(input_ids)
49
+
50
+ speech = outputs.audio[0].cpu()
51
+ return speech
52
 
53
 
54
  def speech_to_speech_translation(audio):
 
62
  description = """
63
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
64
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
65
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
66
  """
67
 
 
87
  with demo:
88
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
89
 
90
+ demo.launch()