Spaces:
Build error
Build error
Commit
·
3e3f8b6
1
Parent(s):
5bd1eec
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,15 @@ import numpy as np
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
-
from transformers import
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
|
@@ -14,7 +21,10 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 16 |
|
| 17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
|
|
|
|
|
|
|
|
|
| 18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
|
| 20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
@@ -27,9 +37,18 @@ def translate(audio):
|
|
| 27 |
|
| 28 |
|
| 29 |
def synthesise(text):
|
| 30 |
-
inputs = processor(text=text, return_tensors="pt")
|
| 31 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def speech_to_speech_translation(audio):
|
|
@@ -43,7 +62,6 @@ title = "Cascaded STST"
|
|
| 43 |
description = """
|
| 44 |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
| 45 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
| 46 |
-
|
| 47 |

|
| 48 |
"""
|
| 49 |
|
|
@@ -69,4 +87,4 @@ file_translate = gr.Interface(
|
|
| 69 |
with demo:
|
| 70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 71 |
|
| 72 |
-
demo.launch()
|
|
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
+
from transformers import (
|
| 7 |
+
SpeechT5ForTextToSpeech,
|
| 8 |
+
SpeechT5HifiGan,
|
| 9 |
+
SpeechT5Processor,
|
| 10 |
+
VitsModel,
|
| 11 |
+
VitsTokenizer,
|
| 12 |
+
pipeline
|
| 13 |
+
)
|
| 14 |
+
from transformers import VitsModel, VitsTokenizer
|
| 15 |
|
| 16 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
|
|
|
| 21 |
# load text-to-speech checkpoint and speaker embeddings
|
| 22 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 23 |
|
| 24 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
| 25 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
|
| 26 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")
|
| 27 |
+
|
| 28 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 29 |
|
| 30 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
def synthesise(text):
|
| 40 |
+
# inputs = processor(text=text, return_tensors="pt")
|
| 41 |
+
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
| 42 |
+
# speech = speech.cpu()
|
| 43 |
+
|
| 44 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 45 |
+
input_ids = inputs["input_ids"]
|
| 46 |
+
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
outputs = model(input_ids)
|
| 49 |
+
|
| 50 |
+
speech = outputs.audio[0].cpu()
|
| 51 |
+
return speech
|
| 52 |
|
| 53 |
|
| 54 |
def speech_to_speech_translation(audio):
|
|
|
|
| 62 |
description = """
|
| 63 |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
| 64 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
|
|
|
| 65 |

|
| 66 |
"""
|
| 67 |
|
|
|
|
| 87 |
with demo:
|
| 88 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 89 |
|
| 90 |
+
demo.launch()
|