Spaces:
Running
on
Zero
Running
on
Zero
| from vc_infer_pipeline import VC | |
| from myutils import Audio | |
| from infer_pack.models import ( | |
| SynthesizerTrnMs256NSFsid, | |
| SynthesizerTrnMs256NSFsid_nono, | |
| SynthesizerTrnMs768NSFsid, | |
| SynthesizerTrnMs768NSFsid_nono, | |
| ) | |
| from fairseq import checkpoint_utils | |
| from config import Config | |
| import torch | |
| import numpy as np | |
| import traceback | |
| import os | |
| import sys | |
| import warnings | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| os.makedirs(os.path.join(now_dir, "audios"), exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "audio-outputs"), exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) | |
| warnings.filterwarnings("ignore") | |
| torch.manual_seed(114514) | |
| config = Config() | |
| hubert_model = None | |
| weight_root = "weights" | |
| def load_hubert(): | |
| # Determinar si existe una tarjeta N que pueda usarse para entrenar y acelerar la inferencia. | |
| global hubert_model | |
| models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
| ["hubert_base.pt"], | |
| suffix="", | |
| ) | |
| hubert_model = models[0] | |
| hubert_model = hubert_model.to(config.device) | |
| if config.is_half: | |
| hubert_model = hubert_model.half() | |
| else: | |
| hubert_model = hubert_model.float() | |
| hubert_model.eval() | |
| def vc_single( | |
| sid, | |
| input_audio_path0, | |
| input_audio_path1, | |
| f0_up_key, | |
| f0_file, | |
| f0_method, | |
| file_index, | |
| file_index2, | |
| # file_big_npy, | |
| index_rate, | |
| filter_radius, | |
| resample_sr, | |
| rms_mix_rate, | |
| protect, | |
| crepe_hop_length, | |
| ): | |
| global tgt_sr, net_g, vc, hubert_model, version | |
| if input_audio_path0 is None or input_audio_path0 is None: | |
| return "You need to upload an audio", None | |
| f0_up_key = int(f0_up_key) | |
| try: | |
| if input_audio_path0 == "": | |
| audio = Audio.load_audio(input_audio_path1, 16000) | |
| else: | |
| audio = Audio.load_audio(input_audio_path0, 16000) | |
| audio_max = np.abs(audio).max() / 0.95 | |
| if audio_max > 1: | |
| audio /= audio_max | |
| times = [0, 0, 0] | |
| if not hubert_model: | |
| load_hubert() | |
| if_f0 = cpt.get("f0", 1) | |
| file_index = ( | |
| ( | |
| file_index.strip(" ") | |
| .strip('"') | |
| .strip("\n") | |
| .strip('"') | |
| .strip(" ") | |
| .replace("trained", "added") | |
| ) | |
| if file_index != "" | |
| else file_index2 | |
| ) | |
| audio_opt = vc.pipeline( | |
| hubert_model, | |
| net_g, | |
| sid, | |
| audio, | |
| input_audio_path1, | |
| times, | |
| f0_up_key, | |
| f0_method, | |
| file_index, | |
| # file_big_npy, | |
| index_rate, | |
| if_f0, | |
| filter_radius, | |
| tgt_sr, | |
| resample_sr, | |
| rms_mix_rate, | |
| version, | |
| protect, | |
| crepe_hop_length, | |
| f0_file=f0_file, | |
| ) | |
| if tgt_sr != resample_sr >= 16000: | |
| tgt_sr = resample_sr | |
| index_info = ( | |
| "Using index:%s." % file_index | |
| if os.path.exists(file_index) | |
| else "Index not used." | |
| ) | |
| print(index_info) | |
| return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( | |
| index_info, | |
| times[0], | |
| times[1], | |
| times[2], | |
| ), (tgt_sr, audio_opt) | |
| except: | |
| info = traceback.format_exc() | |
| print(info) | |
| return info, (None, None) | |
| def get_vc(model_name): | |
| global tgt_sr, net_g, vc, cpt, version | |
| # Comprobar si se pasó uno o varios modelos | |
| if model_name == "" or model_name == []: | |
| global hubert_model | |
| if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 | |
| print("Limpiar caché") | |
| del net_g, vc, hubert_model, tgt_sr # ,cpt | |
| hubert_model = net_g = vc = hubert_model = tgt_sr = None | |
| # Si hay una GPU disponible, libera la memoria de la GPU | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| # Bloque de abajo no limpia completamente | |
| if_f0 = cpt.get("f0", 1) | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g, cpt | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| cpt = None | |
| return {"success": False, "message": "No se proporcionó un sid"} | |
| person = "%s/%s" % (weight_root, model_name) | |
| print("Cargando %s" % person) | |
| cpt = torch.load(person, map_location="cpu") | |
| tgt_sr = cpt["config"][-1] | |
| cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
| if_f0 = cpt.get("f0", 1) | |
| version = cpt.get("version", "v1") | |
| if version == "v1": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| elif version == "v2": | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs768NSFsid( | |
| *cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
| del net_g.enc_q | |
| print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
| net_g.eval().to(config.device) | |
| if config.is_half: | |
| net_g = net_g.half() | |
| else: | |
| net_g = net_g.float() | |
| vc = VC(tgt_sr, config) |