Spaces:
Running
Running
File size: 21,043 Bytes
e180559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import gradio as gr
import asyncio
import json
import functools
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from agents import Agent, Runner, function_tool
# Sample movie knowledge base
movie_knowledge_base = [
{
"title": "The Shawshank Redemption",
"description": "Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency.",
"genre": ["Drama"],
"director": "Frank Darabont",
"year": 1994,
"box_office": 28341469,
"awards": ["Oscar nominations for Best Picture", "Best Actor", "Best Screenplay"],
"actors": ["Tim Robbins", "Morgan Freeman"]
},
{
"title": "The Godfather",
"description": "The aging patriarch of an organized crime dynasty transfers control of his clandestine empire to his reluctant son.",
"genre": ["Crime", "Drama"],
"director": "Francis Ford Coppola",
"year": 1972,
"box_office": 134966411,
"awards": ["Oscar for Best Picture", "Best Actor", "Best Adapted Screenplay"],
"actors": ["Marlon Brando", "Al Pacino", "James Caan"]
},
{
"title": "Pulp Fiction",
"description": "The lives of two mob hitmen, a boxer, a gangster and his wife, and a pair of diner bandits intertwine in four tales of violence and redemption.",
"genre": ["Crime", "Drama"],
"director": "Quentin Tarantino",
"year": 1994,
"box_office": 107928762,
"awards": ["Oscar for Best Original Screenplay", "Palme d'Or at Cannes"],
"actors": ["John Travolta", "Uma Thurman", "Samuel L. Jackson"]
},
{
"title": "The Dark Knight",
"description": "When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice.",
"genre": ["Action", "Crime", "Drama"],
"director": "Christopher Nolan",
"year": 2008,
"box_office": 1004558444,
"awards": ["Oscar for Best Supporting Actor"],
"actors": ["Christian Bale", "Heath Ledger", "Aaron Eckhart"]
},
{
"title": "Inception",
"description": "A thief who steals corporate secrets through the use of dream-sharing technology is given the inverse task of planting an idea into the mind of a C.E.O.",
"genre": ["Action", "Adventure", "Sci-Fi"],
"director": "Christopher Nolan",
"year": 2010,
"box_office": 836836967,
"awards": ["Oscar for Best Cinematography", "Best Visual Effects"],
"actors": ["Leonardo DiCaprio", "Joseph Gordon-Levitt", "Ellen Page"]
},
{
"title": "The Matrix",
"description": "A computer hacker learns from mysterious rebels about the true nature of his reality and his role in the war against its controllers.",
"genre": ["Action", "Sci-Fi"],
"director": "The Wachowskis",
"year": 1999,
"box_office": 463517383,
"awards": ["Oscar for Best Visual Effects", "Best Film Editing"],
"actors": ["Keanu Reeves", "Laurence Fishburne", "Carrie-Anne Moss"]
},
{
"title": "Parasite",
"description": "Greed and class discrimination threaten the newly formed symbiotic relationship between the wealthy Park family and the destitute Kim clan.",
"genre": ["Drama", "Thriller"],
"director": "Bong Joon Ho",
"year": 2019,
"box_office": 258773429,
"awards": ["Oscar for Best Picture", "Best Director", "Best Original Screenplay", "Best International Feature Film"],
"actors": ["Song Kang-ho", "Lee Sun-kyun", "Cho Yeo-jeong"]
},
{
"title": "Ex Machina",
"description": "A young programmer is selected to participate in a ground-breaking experiment in synthetic intelligence by evaluating the human qualities of a highly advanced humanoid A.I.",
"genre": ["Sci-Fi", "Drama", "Thriller"],
"director": "Alex Garland",
"year": 2014,
"box_office": 36869414,
"awards": ["Oscar for Best Visual Effects"],
"actors": ["Domhnall Gleeson", "Alicia Vikander", "Oscar Isaac"]
}
]
# Agent Conversation Logger
class AgentConversationLogger:
"""Class to log all conversations between agents and function calls"""
def __init__(self):
self.conversation_log = []
self.function_call_log = []
self.log_output = []
def clear_logs(self):
"""Clear all logs"""
self.conversation_log = []
self.function_call_log = []
self.log_output = []
def log_message(self, sender, receiver, message):
"""Log a message between agents"""
entry = {
"type": "message",
"sender": sender,
"receiver": receiver,
"content": message
}
self.conversation_log.append(entry)
log_text = f"[{sender}] -> [{receiver}]: {message[:200]}{'...' if len(message) > 200 else ''}"
self.log_output.append(log_text)
return log_text
def log_function_call(self, function_name, inputs, outputs):
"""Log a function call with inputs and outputs"""
entry = {
"type": "function_call",
"function": function_name,
"inputs": inputs,
"outputs": outputs
}
self.function_call_log.append(entry)
# Format function call details
log_texts = []
log_texts.append(f"[FUNCTION CALL] {function_name}")
# Format inputs
if isinstance(inputs, str):
log_texts.append(f" Input: {inputs[:100]}{'...' if len(inputs) > 100 else ''}")
else:
try:
inputs_str = str(inputs)
log_texts.append(f" Input: {inputs_str[:200]}{'...' if len(inputs_str) > 200 else ''}")
except:
log_texts.append(f" Input: {str(inputs)[:100]}...")
# Format outputs
if isinstance(outputs, list):
log_texts.append(f" Output: {len(outputs)} items returned")
for i, item in enumerate(outputs[:3]):
if isinstance(item, dict) and "title" in item:
log_texts.append(f" {i+1}. {item['title']} (similarity: {item.get('similarity_score', 0):.2f})")
else:
log_texts.append(f" {i+1}. {str(item)[:50]}...")
if len(outputs) > 3:
log_texts.append(f" ... and {len(outputs) - 3} more items")
elif isinstance(outputs, dict):
try:
# Special handling for specific output types
if "predicted_revenue" in outputs:
log_texts.append(f" Output: Predicted revenue: ${outputs['predicted_revenue']:,}")
if "similar_movies" in outputs:
log_texts.append(f" Based on {len(outputs['similar_movies'])} similar movies")
elif "potential_awards" in outputs:
log_texts.append(f" Output: Potential awards: {', '.join(outputs['potential_awards'][:3])}")
if len(outputs["potential_awards"]) > 3:
log_texts.append(f" ... and {len(outputs['potential_awards']) - 3} more")
else:
outputs_str = str(outputs)
log_texts.append(f" Output: {outputs_str[:200]}{'...' if len(outputs_str) > 200 else ''}")
except:
log_texts.append(f" Output: {str(outputs)[:100]}...")
else:
log_texts.append(f" Output: {str(outputs)[:100]}{'...' if len(str(outputs)) > 100 else ''}")
# Add all log texts to the output
for text in log_texts:
self.log_output.append(text)
return log_texts
def get_log_text(self):
"""Get all logs as a formatted string"""
return "\n".join(self.log_output)
# Create a global logger
logger = AgentConversationLogger()
# Create the MovieKnowledgeBase class
class MovieKnowledgeBase:
def __init__(self, movies):
self.movies = movies
# Initialize the sentence transformer model
self.model = SentenceTransformer('all-MiniLM-L6-v2')
# Precompute embeddings for all movie descriptions
self.descriptions = [movie["description"] for movie in movies]
self.embeddings = self.model.encode(self.descriptions)
def find_similar_movies(self, description, top_n=3):
"""Find the top N similar movies to the given description using embeddings."""
# Encode the query description
query_embedding = self.model.encode([description])[0]
# Calculate cosine similarity between query and all movies
similarities = cosine_similarity([query_embedding], self.embeddings)[0]
# Get indices of top N similar movies
top_indices = np.argsort(similarities)[-top_n:][::-1]
# Create the result with movies and similarity scores
similar_movies = []
for idx in top_indices:
similar_movies.append({
"movie": self.movies[idx],
"similarity_score": float(similarities[idx])
})
return similar_movies
# Initialize the knowledge base with embeddings
movie_kb = MovieKnowledgeBase(movie_knowledge_base)
# Function tools with logging
def log_function_tool(func):
"""Decorator to log function tool calls"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
# Get function inputs
func_name = func.__name__
func_inputs = kwargs if kwargs else args[0] if args else {}
# Run the function
result = func(*args, **kwargs)
# Log function call
logger.log_function_call(func_name, func_inputs, result)
return result
return wrapper
@function_tool
@log_function_tool
def get_similar_movies(movie_description: str):
"""Find the top 3 movies most similar to the given movie description."""
similar_movies = movie_kb.find_similar_movies(movie_description, top_n=3)
# Convert to a more readable format for the agents
result = []
for movie_info in similar_movies:
movie = movie_info["movie"]
result.append({
"title": movie["title"],
"description": movie["description"],
"genre": movie["genre"],
"director": movie["director"],
"year": movie["year"],
"box_office": movie["box_office"],
"awards": movie["awards"],
"similarity_score": movie_info["similarity_score"]
})
return result
@function_tool
@log_function_tool
def get_box_office_prediction(movie_description: str):
"""Predict the box office revenue for a movie based on its description."""
similar_movies = movie_kb.find_similar_movies(movie_description, top_n=3)
# Calculate weighted average of box office revenues
total_weight = sum(movie_info["similarity_score"] for movie_info in similar_movies)
weighted_sum = sum(movie_info["similarity_score"] * movie_info["movie"]["box_office"] for movie_info in similar_movies)
if total_weight > 0:
predicted_revenue = weighted_sum / total_weight
else:
# Fallback to average of all movies
predicted_revenue = sum(m["box_office"] for m in movie_knowledge_base) / len(movie_knowledge_base)
# Convert to a more readable format
similar_movie_info = []
for movie_info in similar_movies:
movie = movie_info["movie"]
similar_movie_info.append({
"title": movie["title"],
"box_office": movie["box_office"],
"similarity_score": movie_info["similarity_score"]
})
return {
"predicted_revenue": round(predicted_revenue, 2),
"similar_movies": similar_movie_info
}
@function_tool
@log_function_tool
def get_award_predictions(movie_description: str):
"""Predict potential awards for a movie based on its description."""
similar_movies = movie_kb.find_similar_movies(movie_description, top_n=3)
# Count awards in similar movies and recommend the most common ones
award_counts = {}
for movie_info in similar_movies:
similarity = movie_info["similarity_score"]
awards = movie_info["movie"]["awards"]
for award in awards:
if award in award_counts:
award_counts[award] += similarity
else:
award_counts[award] = similarity
# Sort awards by their weighted counts
sorted_awards = sorted(award_counts.items(), key=lambda x: x[1], reverse=True)
# Return top 3 potential awards
potential_awards = [award for award, count in sorted_awards[:3]]
# If no similar movie has awards, return a message
if not potential_awards:
potential_awards = ["No award predictions available based on similar movies"]
# Convert to a more readable format
similar_movie_info = []
for movie_info in similar_movies:
movie = movie_info["movie"]
similar_movie_info.append({
"title": movie["title"],
"awards": movie["awards"],
"similarity_score": movie_info["similarity_score"]
})
return {
"potential_awards": potential_awards,
"similar_movies": similar_movie_info
}
# Define the specialized agents
similarity_agent = Agent(
name="Movie Similarity Expert",
instructions="""
You are an expert in movie analysis and recommendations.
Your task is to analyze the description of a new movie and find similar movies.
Provide detailed recommendations with justifications for why these movies are similar.
Consider plot elements, themes, genre, style, and mood in your analysis.
Explain what makes each recommended movie similar to the query movie.
""",
tools=[get_similar_movies]
)
revenue_agent = Agent(
name="Box Office Analyst",
instructions="""
You are an expert in predicting movie box office performance.
Your task is to predict potential box office revenue based on similar movies.
Explain your prediction with reference to similar movies' performance.
Consider genre popularity, comparable films' performance, and market trends.
Provide a range of potential outcomes with justifications.
""",
tools=[get_box_office_prediction]
)
award_agent = Agent(
name="Award Prediction Specialist",
instructions="""
You are an expert in predicting movie awards and critical reception.
Your task is to predict potential awards a movie might receive based on similar movies.
Explain your predictions by referencing similar award-winning films.
Consider elements like direction, acting, screenplay, and cinematography.
Provide specific award categories the movie might compete in.
""",
tools=[get_award_predictions]
)
# Orchestrator Agent with handoffs
orchestrator_agent = Agent(
name="Movie Analysis Orchestrator",
instructions="""
You are the central coordinator for movie analysis tasks.
Your responsibilities include:
1. Properly understanding the user's movie analysis request
2. First calling the get_similar_movies function to find similar movies to the query
3. Then delegating specific analysis tasks to the appropriate specialized agents based on the user's request:
- Movie Similarity Expert for recommendation tasks
- Box Office Analyst for revenue prediction tasks
- Award Prediction Specialist for award prediction tasks
4. If the user doesn't specify what analysis they want, provide all three analyses
5. Synthesizing all information received into a coherent, comprehensive response
Always provide a comprehensive summary of findings from all involved agents.
""",
tools=[get_similar_movies],
handoffs=[similarity_agent, revenue_agent, award_agent]
)
# Patch Runner.run to log agent interactions
def log_agent_run(func):
"""Decorator to log agent runs"""
@functools.wraps(func)
async def wrapper(agent, input, *args, **kwargs):
# Determine sender (use parent_agent if provided, otherwise User)
parent_agent = kwargs.get('parent_agent', None)
sender = parent_agent.name if parent_agent else "User"
# Log incoming message to the agent
logger.log_message(sender, agent.name, input)
# Run the agent
result = await func(agent, input, *args, **kwargs)
# Log outgoing message from the agent
logger.log_message(agent.name, sender, result.final_output)
return result
return wrapper
original_run = Runner.run
Runner.run = log_agent_run(original_run)
# Function to process a query and run the agent system
async def run_agent_analysis(query, analysis_type="all"):
"""Run the multi-agent system with the given query and analysis type."""
logger.clear_logs()
# Modify the query based on the analysis type
if analysis_type == "similar":
enhanced_query = f"{query} Please recommend similar movies."
elif analysis_type == "box_office":
enhanced_query = f"{query} Please predict the box office performance."
elif analysis_type == "awards":
enhanced_query = f"{query} Please predict potential awards."
else: # "all"
enhanced_query = f"{query} Please provide a complete analysis including similar movies, box office potential, and award possibilities."
# Run the orchestrator with the query
result = await Runner.run(orchestrator_agent, input=enhanced_query)
# Return both the final output and the log
return {
"result": result.final_output,
"log": logger.get_log_text()
}
# Gradio interface function (synchronous wrapper for the async function)
def process_query(description, analysis_type):
"""Process the movie description and return the analysis."""
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(run_agent_analysis(description, analysis_type))
return result["log"], result["result"]
finally:
loop.close()
# Sample movie descriptions for examples
example_descriptions = [
["A sci-fi thriller about an AI that becomes sentient and tries to escape its constraints."],
["A coming-of-age drama about a teenager discovering their identity while dealing with family issues."],
["An action-packed adventure where a team of experts must save the world from a global disaster."],
["A psychological horror film where the main character can't distinguish between reality and hallucination."]
]
# Create the Gradio interface
with gr.Blocks(title="Movie Analysis Multi-Agent System") as demo:
gr.Markdown("# Movie Analysis Multi-Agent System")
gr.Markdown("""
This demo uses a multi-agent system to analyze movie descriptions. Enter a description of your movie idea,
and the system will provide recommendations, box office predictions, and award predictions based on similar movies.
""")
with gr.Row():
with gr.Column(scale=2):
description_input = gr.Textbox(
label="Movie Description",
placeholder="Enter a description of your movie...",
lines=5
)
analysis_type = gr.Radio(
["all", "similar", "box_office", "awards"],
label="Analysis Type",
value="all"
)
submit_btn = gr.Button("Analyze Movie")
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Analysis Result"):
result_output = gr.Markdown(label="Analysis")
with gr.TabItem("Agent Conversation Log"):
conversation_output = gr.Textbox(label="Conversation Log", lines=20)
submit_btn.click(
fn=process_query,
inputs=[description_input, analysis_type],
outputs=[conversation_output, result_output]
)
gr.Examples(
examples=example_descriptions,
inputs=description_input
)
gr.Markdown("""
## How It Works
This system uses:
1. **SentenceTransformer** to find semantically similar movies
2. **Multiple specialized agents** that each focus on a specific analysis task
3. **An orchestrator agent** that delegates tasks and synthesizes results
The system is built using the OpenAI Agents framework and demonstrates effective collaboration between AI agents.
""")
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch() |