Spaces:
Sleeping
Sleeping
File size: 51,200 Bytes
e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 755dcb1 653cb96 755dcb1 0d0493f 30f134b 0d0493f 30f134b 0d0493f 30f134b 0d0493f 30f134b 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 30f134b 0d0493f 30f134b 0d0493f e180559 0d0493f 30f134b 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 b492147 e180559 0d0493f e180559 af071c9 e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 0d0493f e180559 efae7a1 c56f961 e180559 0c78df7 e180559 c56f961 e180559 0d0493f e180559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 |
import gradio as gr
import asyncio
import json
import functools
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from agents import Agent, Runner, function_tool
# Sample movie knowledge base
movie_knowledge_base = [
{
"title": "A Goofy Movie",
"description": "Max Goof, a teenager, embarks on a chaotic road trip with his bumbling father, Goofy, to bond and attend a concert, navigating teenage rebellion and family love.",
"genre": ["Animation", "Children", "Comedy", "Romance"],
"director": "Kevin Lima",
"actors": ["Bill Farmer", "Jason Marsden", "Jim Cummings"],
"year": 1995,
"box_office": 35348597,
"budget": 18000000,
"awards": [],
"rating": 4.5
},
{
"title": "Gumby: The Movie",
"description": "Gumby, a claymation character, and his friends must stop the evil Blockheads from replacing their town with robots during a benefit concert.",
"genre": ["Animation", "Children"],
"director": "Art Clokey",
"actors": ["Dal McKennon", "Art Clokey", "Gloria Clokey"],
"year": 1995,
"box_office": 57076,
"budget": 2800000,
"awards": [],
"rating": 3.5
},
{
"title": "The Swan Princess",
"description": "A princess cursed to become a swan must rely on true love to break the spell, facing an evil sorcerer in this animated fairy tale.",
"genre": ["Animation", "Children"],
"director": "Richard Rich",
"actors": ["Michelle Nicastro", "Howard McGillin", "Jack Palance"],
"year": 1994,
"box_office": 9771650,
"budget": 45000000,
"awards": [],
"rating": 3.0
},
{
"title": "The Lion King",
"description": "Simba, a young lion prince, flees after his father’s death but returns to reclaim his throne from his treacherous uncle Scar in this animated epic.",
"genre": ["Adventure", "Animation", "Children", "Drama", "Musical", "IMAX"],
"director": ["Roger Allers", "Rob Minkoff"],
"actors": ["Matthew Broderick", "Jeremy Irons", "James Earl Jones"],
"year": 1994,
"box_office": 968483777,
"budget": 45000000,
"awards": ["Oscar Best Original Score", "Oscar Best Original Song", "Golden Globe Best Motion Picture - Musical or Comedy"],
"rating": 4.5
},
{
"title": "The Secret Adventures of Tom Thumb",
"description": "A tiny boy, born to normal parents, is kidnapped and navigates a dark, surreal world of science and survival in this stop-motion tale.",
"genre": ["Adventure", "Animation"],
"director": "Dave Borthwick",
"actors": ["Nick Upton", "Deborah Collard", "Frank Passingham"],
"year": 1993,
"box_office": 0,
"budget": 0,
"awards": [],
"rating": 2.5
},
{
"title": "This So-Called Disaster",
"description": "A documentary capturing actor Sam Shepard as he directs a play, blending rehearsals with personal reflections on art and life.",
"genre": ["Documentary", "Disaster"],
"director": "Michael Almereyda",
"actors": ["Sam Shepard", "Nick Nolte", "Sean Penn"],
"year": 2003,
"box_office": 46658,
"budget": 0,
"awards": [],
"rating": 3.0
},
{
"title": "Love and Other Disasters",
"description": "A fashion magazine assistant in London juggles romance, friendship, and chaos while trying to matchmake those around her.",
"genre": ["Comedy", "Romance", "Disaster"],
"director": "Alek Keshishian",
"actors": ["Brittany Murphy", "Matthew Rhys", "Santiago Cabrera"],
"year": 2006,
"box_office": 6743917,
"budget": 10000000,
"awards": [],
"rating": 3.0
},
{
"title": "Disaster Movie",
"description": "A group of friends faces absurd, over-the-top disasters in a parody of blockbuster films, filled with pop culture references.",
"genre": ["Comedy", "Disaster"],
"director": "Aaron Seltzer",
"actors": ["Matt Lanter", "Vanessa Minnillo", "Kim Kardashian"],
"year": 2008,
"box_office": 34816824,
"budget": 20000000,
"awards": [],
"rating": 2.0
},
{
"title": "It's a Disaster",
"description": "A brunch among friends turns chaotic when they learn of an impending apocalyptic attack, testing their relationships and humor.",
"genre": ["Comedy", "Drama", "Disaster"],
"director": "Todd Berger",
"actors": ["Rachel Boston", "Kevin M. Brennan", "David Cross"],
"year": 2012,
"box_office": 60426,
"budget": 500000,
"awards": [],
"rating": 4.0
},
{
"title": "The Challenger Disaster",
"description": "A dramatization of the investigation into the 1986 Challenger space shuttle explosion, focusing on physicist Richard Feynman’s role.",
"genre": ["Drama", "Disaster"],
"director": "James Hawes", # Corrected from "Richard Feynman" (Feynman was a physicist, not the director)
"actors": ["William Hurt", "Bruce Greenwood", "Joanne Whalley"],
"year": 2013,
"box_office": 0,
"budget": 0,
"awards": [],
"rating": 3.0
},
{
"title": "Some Girl(s)",
"description": "A writer travels to confront past girlfriends before his wedding, unraveling emotional truths in this adaptation of Neil LaBute’s play.",
"genre": ["Comedy", "Drama"],
"director": "Daisy von Scherler Mayer", # Corrected from "Michael Hoffman"
"actors": ["Adam Brody", "Kristen Bell", "Zoe Kazan"],
"year": 2013,
"box_office": 0,
"budget": 0,
"awards": [],
"rating": 3.5
},
{
"title": "The Fourth Angel",
"description": "A grieving father becomes a vigilante after his family is killed in a terrorist hijacking, seeking justice outside the law.",
"genre": ["Action", "Drama", "Thriller"],
"director": "John Irvin",
"actors": ["Jeremy Irons", "Forest Whitaker", "Jason Priestley"],
"year": 2001,
"box_office": 0,
"budget": 0,
"awards": [],
"rating": 3.5
},
{
"title": "The Rat Race",
"description": "A struggling musician and a dancer form an unlikely partnership to survive the harsh realities of New York City in this poignant comedy-drama.",
"genre": ["Comedy", "Drama", "Romance"],
"director": "Robert Mulligan",
"actors": ["Tony Curtis", "Debbie Reynolds", "Jack Oakie"],
"year": 1960,
"box_office": 0,
"budget": 0,
"awards": [],
"rating": 3.5
},
{
"title": "Straight from the Heart",
"description": "A photographer from New York falls for a Wyoming rancher in this heartfelt romance, bridging two different worlds.",
"genre": ["Action", "Adventure", "Drama", "Romance", "Western"],
"director": "David S. Cass Sr.",
"actors": ["Teri Polo", "Andrew McCarthy", "Patricia Kalember"],
"year": 2003,
"box_office": 0,
"budget": 0,
"awards": [],
"rating": 4.0
},
{
"title": "Lone Survivor",
"description": "A Navy SEAL team faces overwhelming odds in a failed mission in Afghanistan, fighting for survival in this intense war drama.",
"genre": ["Action", "Drama", "Thriller", "War"],
"director": "Peter Berg",
"actors": ["Mark Wahlberg", "Taylor Kitsch", "Emile Hirsch"],
"year": 2013,
"box_office": 154802912,
"budget": 40000000,
"awards": [],
"rating": 3.0
},
# Sci-Fi Movies
{
"title": "2001: A Space Odyssey",
"description": "A space voyage to Jupiter with the sentient computer HAL after the discovery of a mysterious black monolith affecting human evolution.",
"genre": ["Adventure", "Sci-Fi"],
"director": "Stanley Kubrick",
"actors": ["Keir Dullea", "Gary Lockwood", "William Sylvester"],
"year": 1968,
"box_office": 146000000,
"budget": 10500000,
"awards": ["Oscar Best Visual Effects"],
"rating": 4.2
},
{
"title": "Star Wars: Episode IV - A New Hope",
"description": "Luke Skywalker joins forces with a Jedi Knight, a cocky pilot, a Wookiee, and two droids to save the galaxy from the Empire's world-destroying battle station.",
"genre": ["Action", "Adventure", "Sci-Fi"],
"director": "George Lucas",
"actors": ["Mark Hamill", "Harrison Ford", "Carrie Fisher"],
"year": 1977,
"box_office": 775000000,
"budget": 11000000,
"awards": ["Oscar Best Original Score", "Oscar Best Costume Design", "Oscar Best Film Editing", "Oscar Best Sound", "Oscar Best Visual Effects", "Oscar Best Art Direction"],
"rating": 4.3
},
{
"title": "The Matrix",
"description": "A computer hacker learns from mysterious rebels about the true nature of his reality and his role in the war against its controllers.",
"genre": ["Action", "Sci-Fi"],
"director": "Lana Wachowski, Lilly Wachowski",
"actors": ["Keanu Reeves", "Laurence Fishburne", "Carrie-Anne Moss"],
"year": 1999,
"box_office": 467000000,
"budget": 63000000,
"awards": ["Oscar Best Visual Effects", "Oscar Best Film Editing", "Oscar Best Sound", "Oscar Best Sound Effects Editing"],
"rating": 4.4
},
{
"title": "Gravity",
"description": "Two astronauts work together to survive after an accident leaves them stranded in space.",
"genre": ["Adventure", "Drama", "Sci-Fi"],
"director": "Alfonso Cuarón",
"actors": ["Sandra Bullock", "George Clooney", "Ed Harris"],
"year": 2013,
"box_office": 723000000,
"budget": 100000000,
"awards": ["Oscar Best Director", "Oscar Best Cinematography", "Oscar Best Visual Effects", "Oscar Best Film Editing", "Oscar Best Original Score", "Oscar Best Sound Editing", "Oscar Best Sound Mixing"],
"rating": 3.9
},
{
"title": "Arrival",
"description": "A linguist works with the military to communicate with alien lifeforms after twelve mysterious spacecraft appear around the world.",
"genre": ["Drama", "Mystery", "Sci-Fi"],
"director": "Denis Villeneuve",
"actors": ["Amy Adams", "Jeremy Renner", "Forest Whitaker"],
"year": 2016,
"box_office": 203000000,
"budget": 47000000,
"awards": ["Oscar Best Sound Editing"],
"rating": 4.0
},
# Romance Movies
{
"title": "Titanic",
"description": "A seventeen-year-old aristocrat falls in love with a kind but poor artist aboard the luxurious, ill-fated R.M.S. Titanic.",
"genre": ["Drama", "Romance"],
"director": "James Cameron",
"actors": ["Leonardo DiCaprio", "Kate Winslet", "Billy Zane"],
"year": 1997,
"box_office": 2195000000,
"budget": 200000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Cinematography", "Oscar Best Costume Design", "Oscar Best Film Editing", "Oscar Best Original Score", "Oscar Best Original Song", "Oscar Best Sound", "Oscar Best Sound Effects Editing", "Oscar Best Visual Effects", "Oscar Best Art Direction"],
"rating": 3.9
},
{
"title": "Casablanca",
"description": "A cynical expatriate American cafe owner struggles to decide whether or not to help his former lover and her fugitive husband escape the Nazis in French Morocco.",
"genre": ["Drama", "Romance", "War"],
"director": "Michael Curtiz",
"actors": ["Humphrey Bogart", "Ingrid Bergman", "Paul Henreid"],
"year": 1942,
"box_office": 10000000,
"budget": 950000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Adapted Screenplay"],
"rating": 4.3
},
{
"title": "Romeo and Juliet",
"description": "Shakespeare's famous play is updated to the hip modern suburb of Verona still retaining its original dialogue.",
"genre": ["Drama", "Romance"],
"director": "Franco Zeffirelli",
"actors": ["Leonard Whiting", "Olivia Hussey", "John McEnery"],
"year": 1968,
"box_office": 38000000,
"budget": 850000,
"awards": ["Oscar Best Cinematography", "Oscar Best Costume Design"],
"rating": 3.8
},
{
"title": "The English Patient",
"description": "At the close of WWII, a young nurse tends to a badly-burned plane crash victim. His past is shown in flashbacks, revealing an involvement in a fateful love affair.",
"genre": ["Drama", "Romance", "War"],
"director": "Anthony Minghella",
"actors": ["Ralph Fiennes", "Juliette Binoche", "Willem Dafoe"],
"year": 1996,
"box_office": 232000000,
"budget": 20000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Supporting Actress", "Oscar Best Cinematography", "Oscar Best Film Editing", "Oscar Best Original Score", "Oscar Best Sound", "Oscar Best Art Direction", "Oscar Best Costume Design"],
"rating": 3.8
},
{
"title": "Out of Africa",
"description": "In 20th-century colonial Kenya, a Danish baroness/plantation owner has a passionate love affair with a free-spirited big-game hunter.",
"genre": ["Drama", "Romance"],
"director": "Sydney Pollack",
"actors": ["Meryl Streep", "Robert Redford", "Klaus Maria Brandauer"],
"year": 1985,
"box_office": 227000000,
"budget": 27000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Adapted Screenplay", "Oscar Best Cinematography", "Oscar Best Original Score", "Oscar Best Sound", "Oscar Best Art Direction"],
"rating": 3.6
},
# History Movies
{
"title": "Schindler's List",
"description": "In German-occupied Poland during World War II, industrialist Oskar Schindler gradually becomes concerned for his Jewish workforce after witnessing their persecution by the Nazis.",
"genre": ["Drama", "History", "War"],
"director": "Steven Spielberg",
"actors": ["Liam Neeson", "Ben Kingsley", "Ralph Fiennes"],
"year": 1993,
"box_office": 322000000,
"budget": 22000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Adapted Screenplay", "Oscar Best Cinematography", "Oscar Best Film Editing", "Oscar Best Original Score", "Oscar Best Art Direction"],
"rating": 4.5
},
{
"title": "The King's Speech",
"description": "The story of King George VI, his impromptu ascension to the throne of the British Empire in 1936, and the speech therapist who helped the unsure monarch overcome his stammer.",
"genre": ["Drama", "History"],
"director": "Tom Hooper",
"actors": ["Colin Firth", "Geoffrey Rush", "Helena Bonham Carter"],
"year": 2010,
"box_office": 414000000,
"budget": 15000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Actor", "Oscar Best Original Screenplay"],
"rating": 4.0
},
{
"title": "Gandhi",
"description": "The life of the lawyer who became the famed leader of the Indian revolts against the British rule through his philosophy of nonviolent protest.",
"genre": ["Drama", "History"],
"director": "Richard Attenborough",
"actors": ["Ben Kingsley", "Candice Bergen", "Edward Fox"],
"year": 1982,
"box_office": 52000000,
"budget": 22000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Actor", "Oscar Best Original Screenplay", "Oscar Best Cinematography", "Oscar Best Film Editing", "Oscar Best Costume Design", "Oscar Best Art Direction"],
"rating": 4.0
},
{
"title": "Apollo 13",
"description": "NASA must devise a strategy to return Apollo 13 to Earth safely after the spacecraft undergoes massive internal damage putting the lives of the three astronauts on board in jeopardy.",
"genre": ["Drama", "History"],
"director": "Ron Howard",
"actors": ["Tom Hanks", "Bill Paxton", "Kevin Bacon"],
"year": 1995,
"box_office": 355000000,
"budget": 40000000,
"awards": ["Oscar Best Film Editing", "Oscar Best Sound"],
"rating": 3.9
},
{
"title": "Braveheart",
"description": "Scottish warrior William Wallace leads his countrymen in a rebellion to free his homeland from the tyranny of King Edward I of England.",
"genre": ["Action", "Drama", "History", "War"],
"director": "Mel Gibson",
"actors": ["Mel Gibson", "Sophie Marceau", "Patrick McGoohan"],
"year": 1995,
"box_office": 210000000,
"budget": 70000000,
"awards": ["Oscar Best Picture", "Oscar Best Director", "Oscar Best Cinematography", "Oscar Best Sound Effects Editing", "Oscar Best Makeup"],
"rating": 4.2
},
# Comedy Movies
{
"title": "Intouchables",
"description": "A true story of two men who should never have met – a quadriplegic aristocrat who was injured in a paragliding accident and a young man from the projects.",
"genre": ["Drama", "Comedy"],
"director": "Olivier Nakache",
"actors": ["François Cluzet", "Omar Sy", "Anne Le Ny"],
"year": 2011,
"box_office": 426590315,
"budget": 13000000,
"awards": ["Golden Globe Award Best Foreign Language Film", "BAFTA Award Best Film Not in the English Language"],
"rating": 4.0
},
{
"title": "Inside Out",
"description": "When 11-year-old Riley moves to a new city, her Emotions team up to help her through the transition. Joy, Fear, Anger, Disgust and Sadness work together, but when Joy and Sadness get lost, they must journey through unfamiliar places to get back home.",
"genre": ["Drama", "Comedy", "Animation", "Family"],
"director": "Pete Docter",
"actors": ["Amy Poehler", "Phyllis Smith", "Richard Kind"],
"year": 2015,
"box_office": 859076254,
"budget": 175000000,
"awards": ["Oscar Best Animated Feature", "Golden Globe Award Best Animated Feature Film"],
"rating": 3.9
},
{
"title": "Paddington in Peru",
"description": "Paddington travels to Peru to visit his beloved Aunt Lucy, who now resides at the Home for Retired Bears. With the Brown Family in tow, a thrilling adventure ensues when a mystery plunges them into an unexpected journey through the Amazon rainforest and up to the mountain peaks of Peru.",
"genre": ["Comedy", "Family", "Adventure"],
"director": "Dougal Wilson",
"actors": ["Ben Whishaw", "Hugh Bonneville", "Emily Mortimer"],
"year": 2024,
"box_office": 175614864,
"budget": 90000000,
"awards": ["Visual Effects Society (VES) Award"],
"rating": 3.5
},
{
"title": "Free Guy",
"description": "A bank teller discovers he is actually a background player in an open-world video game, and decides to become the hero of his own story. Now, in a world where there are no limits, he is determined to be the guy who saves his world his way before it's too late.",
"genre": ["Comedy", "Sci-Fi", "Adventure"],
"director": "Dougal Wilson",
"actors": ["Ryan Reynolds", "Jodie Comer", "Joe Keery"],
"year": 2021,
"box_office": 331526598,
"budget": 100000000,
"awards": ["Critics' Choice Super Award", "People’s Choice Award People’s Choice Award"],
"rating": 3.5
},
{
"title": "Barbie",
"description": "Barbie and Ken are having the time of their lives in the colorful and seemingly perfect world of Barbie Land. However, when they get a chance to go to the real world, they soon discover the joys and perils of living among humans.",
"genre": ["Comedy", "Adventure"],
"director": "Greta Gerwig",
"actors": ["Margot Robbie", "Ryan Gosling", "America Ferrera"],
"year": 2023,
"box_office": 1447038421,
"budget": 145000000,
"awards": ["Golden Globe Award Best Motion Picture", "BAFTA Award Best Production Design"],
"rating": 3.5
},
# Action Movies
{
"title": "Avengers: Endgame",
"description": "After the devastating events of Avengers: Infinity War, the universe is in ruins due to the efforts of the Mad Titan, Thanos. With the help of remaining allies, the Avengers must assemble once more in order to undo Thanos' actions and restore order to the universe once and for all, no matter what consequences may be in store.",
"genre": ["Adventure", "Science Fiction", "Action"],
"director": "Anthony Russo",
"actors": ["Robert Downey Jr.", "Chris Evans", "Mark Ruffalo"],
"year": 2019,
"box_office": 2799439100,
"budget": 356000000,
"awards": ["Critics' Choice Movie Awards Best Action Movie", "MTV Movie & TV Awards Best Movie"],
"rating": 3.9
},
{
"title": "Mission: Impossible – Fallout",
"description": "When an IMF mission ends badly, the world is faced with dire consequences. As Ethan Hunt takes it upon himself to fulfill his original briefing, the CIA begin to question his loyalty and his motives. The IMF team find themselves in a race against time, hunted by assassins while trying to prevent a global catastrophe.",
"genre": ["Action", "Adventure"],
"director": "Christopher McQuarrie",
"actors": ["Tom Cruise", "Henry Cavill", "Ving Rhames"],
"year": 2018,
"box_office": 791658205,
"budget": 178000000,
"awards": [],
"rating": 3.8
},
{
"title": "Black Widow",
"description": "Natasha Romanoff, also known as Black Widow, confronts the darker parts of her ledger when a dangerous conspiracy with ties to her past arises. Pursued by a force that will stop at nothing to bring her down, Natasha must deal with her history as a spy and the broken relationships left in her wake long before she became an Avenger.",
"genre": ["Adventure", "Sci-Fi", "Action"],
"director": "Cate Shortland",
"actors": ["Scarlett Johansson", "Florence Pugh", "Rachel Weisz"],
"year": 2021,
"box_office": 379751655,
"budget": 200000000,
"awards": ["People's Choice Awards", "American Film Institute Movies of the Year"],
"rating": 3.1
},
{
"title": "Deadpool & Wolverine",
"description": "A listless Wade Wilson toils away in civilian life with his days as the morally flexible mercenary, Deadpool, behind him. But when his homeworld faces an existential threat, Wade must reluctantly suit-up again with an even more reluctant Wolverine.",
"genre": ["Comedy", "Sci-Fi", "Action"],
"director": "Shawn Levy",
"actors": ["Ryan Reynolds", "Hugh Jackman", "Emma Corrin"],
"year": 2024,
"box_office": 1338073645,
"budget": 200000000,
"awards": ["Critics' Choice Super Award Best Action Movie", "Golden Globe Awards Best Motion Picture – Musical or Comedy"],
"rating": 3.5
},
{
"title": "Top Gun: Maverick",
"description": "After more than thirty years of service as one of the Navy’s top aviators, and dodging the advancement in rank that would ground him, Pete “Maverick” Mitchell finds himself training a detachment of TOP GUN graduates for a specialized mission the likes of which no living pilot has ever seen.",
"genre": ["Action", "Drama"],
"director": "Joseph Kosinski",
"actors": ["Tom Cruise", "Miles Teller", "Monica Barbaro"],
"year": 2022,
"box_office": 1495696292,
"budget": 170000000,
"awards": ["Oscar Best Sound", "BAFTA Award Best Cinematography"],
"rating": 3.9
},
# Thriller or Horror Movies
{
"title": "Uncut Gems",
"description": "A charismatic New York City jeweler always on the lookout for the next big score makes a series of high-stakes bets that could lead to the windfall of a lifetime. Howard must perform a precarious high-wire act, balancing business, family, and encroaching adversaries on all sides in his relentless pursuit of the ultimate win.",
"genre": ["Drama", "Thriller", "Crime"],
"director": "Benny Safdie",
"actors": ["Adam Sandler", "LaKeith Stanfield", "Julia Fox"],
"year": 2019,
"box_office": 50023780,
"budget": 19000000,
"awards": ["National Board of Review Awards Best Actor"],
"rating": 3.8
},
{
"title": "Dark Waters",
"description": "A tenacious attorney uncovers a dark secret that connects a growing number of unexplained deaths to one of the world's largest corporations. In the process, he risks everything — his future, his family, and his own life — to expose the truth.",
"genre": ["Drama", "Thriller"],
"director": "Todd Haynes",
"actors": ["Mark Ruffalo", "Anne Hathaway", "Tim Robbins"],
"year": 2019,
"box_office": 23108017,
"budget": 30000000,
"awards": [],
"rating": 3.9
},
{
"title": "Promising Young Woman",
"description": "A young woman, traumatized by a tragic event in her past, seeks out vengeance against those who crossed her path.",
"genre": ["Drama", "Thriller", "Crime"],
"director": "Emerald Fennell",
"actors": ["Carey Mulligan", "Bo Burnham", "Alison Brie"],
"year": 2020,
"box_office": 18854166,
"budget": 10000000,
"awards": ["Oscar Best Original Screenplay", "BAFTA Awards Outstanding British Film"],
"rating": 3.7
},
{
"title": "The Substance",
"description": "A fading celebrity decides to use a black market drug, a cell-replicating substance that temporarily creates a younger, better version of herself.",
"genre": ["Comedy", "Sci-Fi", "Horror"],
"director": "Coralie Fargeat",
"actors": ["Demi Moore", "Margaret Qualley", "Dennis Quaid"],
"year": 2024,
"box_office": 77307177,
"budget": 17500000,
"awards": ["Oscar Best Picture", "Golden Globe Awards Best Actress"],
"rating": 3.5
},
{
"title": "Smile 2",
"description": "About to embark on a new world tour, global pop sensation Skye Riley begins experiencing increasingly terrifying and inexplicable events. Overwhelmed by the escalating horrors and the pressures of fame, Skye is forced to face her dark past to regain control of her life before it spirals out of control.",
"genre": ["Horror", "Mystery"],
"director": "Parker Finn",
"actors": ["Naomi Scott, Rosemarie DeWitt, Lukas Gage"],
"year": 2024,
"box_office": 138128854,
"budget": 28000000,
"awards": [],
"rating": 3.2
}
]
# Agent Conversation Logger
class AgentConversationLogger:
"""Class to log all conversations between agents and function calls"""
def __init__(self):
self.conversation_log = []
self.function_call_log = []
self.log_output = []
def clear_logs(self):
"""Clear all logs"""
self.conversation_log = []
self.function_call_log = []
self.log_output = []
def log_message(self, sender, receiver, message):
"""Log a message between agents"""
entry = {
"type": "message",
"sender": sender,
"receiver": receiver,
"content": message
}
self.conversation_log.append(entry)
log_text = f"[{sender}] -> [{receiver}]: {message[:200]}{'...' if len(message) > 200 else ''}"
self.log_output.append(log_text)
return log_text
def log_function_call(self, function_name, inputs, outputs):
"""Log a function call with inputs and outputs"""
entry = {
"type": "function_call",
"function": function_name,
"inputs": inputs,
"outputs": outputs
}
self.function_call_log.append(entry)
# Format function call details
log_texts = []
log_texts.append(f"[FUNCTION CALL] {function_name}")
# Format inputs
if isinstance(inputs, str):
log_texts.append(f" Input: {inputs[:100]}{'...' if len(inputs) > 100 else ''}")
else:
try:
inputs_str = str(inputs)
log_texts.append(f" Input: {inputs_str[:200]}{'...' if len(inputs_str) > 200 else ''}")
except:
log_texts.append(f" Input: {str(inputs)[:100]}...")
# Format outputs
if isinstance(outputs, list):
log_texts.append(f" Output: {len(outputs)} items returned")
for i, item in enumerate(outputs[:3]):
if isinstance(item, dict) and "title" in item:
log_texts.append(f" {i+1}. {item['title']} (similarity: {item.get('similarity_score', 0):.2f})")
else:
log_texts.append(f" {i+1}. {str(item)[:50]}...")
if len(outputs) > 3:
log_texts.append(f" ... and {len(outputs) - 3} more items")
elif isinstance(outputs, dict):
try:
# Special handling for specific output types
if "predicted_revenue" in outputs:
log_texts.append(f" Output: Predicted revenue: ${outputs['predicted_revenue']:,}")
if "similar_movies" in outputs:
log_texts.append(f" Based on {len(outputs['similar_movies'])} similar movies")
elif "potential_awards" in outputs:
log_texts.append(f" Output: Potential awards: {', '.join(outputs['potential_awards'][:3])}")
if len(outputs["potential_awards"]) > 3:
log_texts.append(f" ... and {len(outputs['potential_awards']) - 3} more")
else:
outputs_str = str(outputs)
log_texts.append(f" Output: {outputs_str[:200]}{'...' if len(outputs_str) > 200 else ''}")
except:
log_texts.append(f" Output: {str(outputs)[:100]}...")
else:
log_texts.append(f" Output: {str(outputs)[:100]}{'...' if len(str(outputs)) > 100 else ''}")
# Add all log texts to the output
for text in log_texts:
self.log_output.append(text)
return log_texts
def get_log_text(self):
"""Get all logs as a formatted string"""
# Format logs with clear section dividers for readability
formatted_logs = []
# Add a header
formatted_logs.append("===== COMPLETE AGENT CONVERSATION LOG =====\n")
# Add all log entries with original formatting
for log_entry in self.log_output:
formatted_logs.append(log_entry)
# Join with double newlines for better readability
return "\n".join(formatted_logs)
# Create a global logger
logger = AgentConversationLogger()
# Create a class to handle the movie knowledge base with embeddings
class MovieKnowledgeBase:
def __init__(self, movies):
self.movies = movies
# Initialize the sentence transformer model
self.model = SentenceTransformer('all-MiniLM-L6-v2')
# Precompute embeddings for all movie descriptions
self.descriptions = [movie["description"] for movie in movies]
self.embeddings = self.model.encode(self.descriptions)
def find_similar_movies(self, description, top_n=3):
"""Find the top N similar movies to the given description using embeddings."""
# Encode the query description
query_embedding = self.model.encode([description])[0]
# Calculate cosine similarity between query and all movies
similarities = cosine_similarity([query_embedding], self.embeddings)[0]
# Get indices of top N similar movies
top_indices = np.argsort(similarities)[-top_n:][::-1]
# Create the result with movies and similarity scores
similar_movies = []
for idx in top_indices:
similar_movies.append({
"movie": self.movies[idx],
"similarity_score": float(similarities[idx])
})
return similar_movies
# Initialize the knowledge base with embeddings
movie_kb = MovieKnowledgeBase(movie_knowledge_base)
# Function tools with logging
# Fix the decorator to properly handle the logger parameter
def log_function_tool(logger_param):
"""Decorator factory that returns a decorator to log function tool calls"""
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
# Get function inputs
func_name = func.__name__
func_inputs = kwargs if kwargs else args[0] if args else {}
# Run the function
result = func(*args, **kwargs)
# Log function call
logger_param.log_function_call(func_name, func_inputs, result)
return result
return wrapper
return decorator
def find_similar_movies(query_description, top_n=3):
"""
Find movies similar to the query description using sentence embeddings and cosine similarity.
This implementation uses SentenceTransformer to create semantic embeddings
of the movie descriptions and calculates similarity using cosine similarity.
"""
return movie_kb.find_similar_movies(query_description, top_n)
# Original functions for analysis
def predict_box_office(movie_description, similar_movies, target_budget):
import numpy as np
def get_inflation_adjustment(year, current_year=2025):
return 1 + (current_year - year) * 0.03
def get_year_weight(year):
return 1.0 if year >= 2000 else 0.6
adjusted_box_offices = []
total_weight = 0
for movie_info in similar_movies:
movie = movie_info["movie"]
sim_score = movie_info["similarity_score"]
if movie["budget"] > 0:
budget_ratio = target_budget / movie["budget"]
else:
budget_ratio = 1
inflation_factor = get_inflation_adjustment(movie["year"])
year_weight = get_year_weight(movie["year"])
adjusted_bo = movie["box_office"] * year_weight * budget_ratio
adjusted_box_offices.append(sim_score * adjusted_bo)
total_weight += sim_score * year_weight
if total_weight > 0:
base_estimate = sum(adjusted_box_offices) / total_weight
else:
base_estimate = np.mean([m["box_office"] * get_inflation_adjustment(m["year"]) for m in movie_knowledge_base])
genres = set()
for movie_info in similar_movies:
movie = movie_info["movie"]
if isinstance(movie["genre"], list):
genres.update(movie["genre"])
else:
genres.add(movie["genre"])
gc_list = []
for genre in genres:
genre_movies = [m for m in movie_knowledge_base if genre in m["genre"] and m["budget"] > 0]
if not genre_movies:
continue
success_rate = sum(1 for m in genre_movies if (m["box_office"] / m["budget"]) >= 3) / len(genre_movies)
rois = [m["box_office"] / m["budget"] for m in genre_movies]
roi_median = np.median(rois)
revenues = [m["box_office"] for m in genre_movies]
mean_revenue = np.mean(revenues)
std_revenue = np.std(revenues)
cv = std_revenue / mean_revenue if mean_revenue > 0 else 0
gc = success_rate * roi_median * (1 / (1 + cv))
gc_list.append(gc)
final_gc = np.mean(gc_list) if gc_list else 1
def lhs_sampling(mean_value, lower_factor=0.9, upper_factor=1.1, num_samples=1000):
intervals = np.linspace(lower_factor, upper_factor, num_samples + 1)
samples = intervals[:-1] + np.diff(intervals) * np.random.rand(num_samples)
np.random.shuffle(samples)
return mean_value * samples
num_simulations = 1000
simulated_gc = lhs_sampling(final_gc, num_samples=num_simulations)
simulations = base_estimate * simulated_gc
return simulations
def predict_awards(movie_description, similar_movies):
"""Predict potential awards based on similar movies."""
# Count awards in similar movies and recommend the most common ones
award_counts = {}
for movie_info in similar_movies:
similarity = movie_info["similarity_score"]
awards = movie_info["movie"]["awards"]
for award in awards:
if award in award_counts:
award_counts[award] += similarity
else:
award_counts[award] = similarity
# Sort awards by their weighted counts
sorted_awards = sorted(award_counts.items(), key=lambda x: x[1], reverse=True)
# Return top 3 potential awards
potential_awards = [award for award, count in sorted_awards[:3]]
# If no similar movie has awards, return a message
if not potential_awards:
return ["No award predictions available based on similar movies"]
return potential_awards
# Function tools with logging
@function_tool
@log_function_tool(logger)
def get_similar_movies(movie_description: str):
"""Find the top 3 movies most similar to the given movie description."""
similar_movies = find_similar_movies(movie_description, top_n=3)
# Convert to a more readable format for the agents
result = []
for movie_info in similar_movies:
movie = movie_info["movie"]
result.append({
"title": movie["title"],
"description": movie["description"],
"genre": movie["genre"],
"director": movie["director"],
"year": movie["year"],
"box_office": movie["box_office"],
"awards": movie["awards"],
"actors": movie["actors"],
"rating": movie["rating"],
"similarity_score": movie_info["similarity_score"]
})
return result
@function_tool
@log_function_tool(logger)
def get_box_office_prediction(movie_description: str):
"""Predict the box office revenue for a movie based on its description."""
target_budget = None
import re
match = re.search(r"Budget:\s*:\s*(\d+)", movie_description, re.IGNORECASE)
if match:
target_budget = float(match.group(1))
else:
target_budget = 10000000
# print(f"the movie budget is {target_budget}")
similar_movies = find_similar_movies(movie_description, top_n=3)
simulations = predict_box_office(movie_description, similar_movies, target_budget)
baseline_prediction = np.median(simulations)
lower_bound = np.percentile(simulations, 25)
upper_bound = np.percentile(simulations, 75)
budgets = [movie_info["movie"]["budget"] for movie_info in similar_movies if movie_info["movie"]["budget"] > 0]
if budgets:
avg_budget = np.mean(budgets)
else:
avg_budget = 1
threshold_exceed = 3 * target_budget
threshold_below = 2 * target_budget
prob_exceed = float(np.mean(simulations > threshold_exceed))
prob_below = float(np.mean(simulations < threshold_below))
# Convert to a more readable format
similar_movie_info = []
for movie_info in similar_movies:
movie = movie_info["movie"]
similar_movie_info.append({
"title": movie["title"],
"year": movie["year"],
"box_office": movie["box_office"],
"similarity_score": movie_info["similarity_score"]
})
return {
"predicted_revenue": round(baseline_prediction, 2),
"confidence_interval": (round(lower_bound, 2), round(upper_bound, 2)),
"risk_probabilities": {
"exceed_3x_budget": prob_exceed,
"below_2x_budget": prob_below
},
"similar_movies": similar_movie_info
}
@function_tool
@log_function_tool(logger)
def get_award_predictions(movie_description: str):
"""Predict potential awards for a movie based on its description."""
similar_movies = find_similar_movies(movie_description, top_n=3)
potential_awards = predict_awards(movie_description, similar_movies)
# Convert to a more readable format
similar_movie_info = []
for movie_info in similar_movies:
movie = movie_info["movie"]
similar_movie_info.append({
"title": movie["title"],
"awards": movie["awards"],
"similarity_score": movie_info["similarity_score"]
})
return {
"potential_awards": potential_awards,
"similar_movies": similar_movie_info
}
# Specialized agents
similarity_agent = Agent(
name="Movie Similarity Expert",
instructions="""
You are an expert in movie analysis and recommendations.
Your task is to analyze the description of a new movie and find similar movies.
Provide detailed recommendations with justifications for why these movies are similar.
Introduce you are similarity agent in your analysis. Always include similarity_score together with similar_movies in your analysis.
""",
tools=[get_similar_movies]
)
revenue_agent = Agent(
name="Box Office Analyst",
instructions="""
You are an expert in predicting movie box office performance.
Your task is to estimate the potential gross worldwide revenue of a movie by comparing its description with similar movies.
In your analysis, you will adjust historical box office data for inflation and apply appropriate weightings based on release year.
Furthermore, you should account for risk factors by calculating the probability that the predicted revenue exceeds 3 times the average budget of similar movies or falls below 2 times the budget.
Introduce yourself as the revenue agent and explain your prediction methodology, referencing the performance of similar movies, the inflation adjustments, and the uncertainty derived from Monte Carlo simulations.
""",
tools=[get_box_office_prediction]
)
award_agent = Agent(
name="Award Prediction Specialist",
instructions="""
You are an expert in predicting movie awards and critical reception.
Your task is to predict potential awards a movie might receive based on similar movies.
Explain your predictions by referencing similar award-winning films.
Introduce you are award agent in your analysis. Always include similarity_score together with similar_movies in your analysis.
""",
tools=[get_award_predictions]
)
# Orchestrator Agent with handoffs
orchestrator_agent = Agent(
name="Movie Analysis Orchestrator",
instructions="""
You are the central coordinator for movie analysis tasks and need to handoff to the appropriate agent.
Your responsibilities include:
1. Properly understanding the user's movie analysis request
2. Handoff specific analysis tasks to the appropriate specialized agents based on the user's request:
- Movie Similarity Expert for recommendation tasks
- Box Office Analyst for revenue prediction tasks
- Award Prediction Specialist for award prediction tasks
""",
#tools=[get_similar_movies],
handoffs=[similarity_agent, revenue_agent, award_agent]
)
# Patch Runner.run to log agent interactions
def log_agent_run(func):
"""Decorator to log agent runs"""
@functools.wraps(func)
async def wrapper(agent, input, *args, **kwargs):
# Determine sender (use parent_agent if provided, otherwise User)
parent_agent = kwargs.get('parent_agent', None)
sender = parent_agent.name if parent_agent else "User"
# Log incoming message to the agent
logger.log_message(sender, agent.name, input)
# Run the agent
result = await func(agent, input, *args, **kwargs)
# Log outgoing message from the agent
logger.log_message(agent.name, sender, result.final_output)
return result
return wrapper
original_run = Runner.run
Runner.run = log_agent_run(original_run)
# Function to process a query and run the agent system
async def run_agent_analysis(query, analysis_type="all"):
"""Run the multi-agent system with the given query and analysis type."""
logger.clear_logs()
# Add a start marker to the log
logger.log_output.append(f"\n===== STARTING ANALYSIS: {analysis_type.upper()} =====")
logger.log_output.append(f"Query: {query}")
logger.log_output.append("=======================================")
# Modify the query based on the analysis type
if analysis_type == "similar":
enhanced_query = f"{query} Please recommend similar movies."
elif analysis_type == "box_office":
enhanced_query = f"{query} Please predict the box office performance."
elif analysis_type == "awards":
enhanced_query = f"{query} Please predict potential awards."
else: # "all"
enhanced_query = f"{query} Please provide a complete analysis including similar movies, box office potential, and award possibilities."
# Run the orchestrator with the query
try:
result = await Runner.run(orchestrator_agent, input=enhanced_query)
# Add a completion marker to the log
logger.log_output.append("\n===== ANALYSIS COMPLETE =====")
# Log the full raw conversation for debugging
conversation_summary = "\n\n===== CONVERSATION SUMMARY =====\n"
conversation_summary += f"Total messages: {len(logger.conversation_log)}\n"
conversation_summary += f"Total function calls: {len(logger.function_call_log)}\n"
# Add the conversation summary to the log output
logger.log_output.append(conversation_summary)
# Return both the final output and the log
return {
"result": result.final_output,
"log": logger.get_log_text()
}
except Exception as e:
# Log any errors
error_message = f"\n===== ERROR DURING ANALYSIS =====\n{str(e)}"
logger.log_output.append(error_message)
return {
"result": f"An error occurred during analysis: {str(e)}",
"log": logger.get_log_text()
}
# Gradio interface function (synchronous wrapper for the async function)
def process_query(description, analysis_type):
"""Process the movie description and return the analysis."""
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(run_agent_analysis(description, analysis_type))
# Ensure the conversation log captures everything by adding a summary at the end
full_log = result["log"]
# Add a summary of all agents involved
agent_names = set()
for entry in logger.conversation_log:
if entry["type"] == "message":
agent_names.add(entry["sender"])
agent_names.add(entry["receiver"])
if "User" in agent_names:
agent_names.remove("User")
# Return the complete log and analysis result
return full_log, result["result"]
finally:
loop.close()
# Sample movie descriptions for examples
example_descriptions = [
["A sci-fi thriller about an AI that becomes sentient and tries to escape its constraints."],
["A coming-of-age drama about a teenager discovering their identity while dealing with family issues."],
["An action-packed adventure where a team of experts must save the world from a global disaster."],
["A psychological horror film where the main character can't distinguish between reality and hallucination."]
]
# Create the Gradio interface
with gr.Blocks(title="Movie Analysis Multi-Agent System", css="""
.monospace-text textarea {
font-family: monospace !important;
white-space: pre !important;
overflow-x: auto !important;
font-size: 0.9em !important;
}
""") as demo:
gr.Markdown("# Go Movie Agents: Movie Analysis Multi-Agent System")
gr.Markdown("""
This demo uses a multi-agent system to analyze movie descriptions. Enter a description of your movie idea,
and the system will provide recommendations, box office predictions, and award predictions based on similar movies.
""")
with gr.Row():
with gr.Column(scale=2):
description_input = gr.Textbox(
label="Movie Description",
placeholder="Enter a description of your movie...",
lines=5
)
analysis_type = gr.Radio(
["similar", "box_office", "awards"],
label="Analysis Type",
value="all"
)
submit_btn = gr.Button("Go Movie Agents!", variant="primary")
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("Analysis Result"):
result_output = gr.Markdown(label="Analysis")
with gr.TabItem("Agent Conversation Log"):
conversation_output = gr.Textbox(
label="Conversation Log",
lines=30,
max_lines=100,
show_copy_button=True,
container=True,
scale=2,
autoscroll=False,
elem_classes="monospace-text"
)
submit_btn.click(
fn=process_query,
inputs=[description_input, analysis_type],
outputs=[conversation_output, result_output]
)
gr.Examples(
examples=example_descriptions,
inputs=description_input
)
gr.Markdown("""
## How It Works
This system uses:
1. **SentenceTransformer** to find semantically similar movies
2. **Multiple specialized agents** that each focus on a specific analysis task
3. **An orchestrator agent** that delegates tasks and synthesizes results
The system is built using the OpenAI Agents framework and demonstrates effective collaboration between AI agents.
""")
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch() |