# Inference Inference support command line, HTTP API and web UI. !!! note Overall, reasoning consists of several parts: 1. Encode a given ~10 seconds of voice using VQGAN. 2. Input the encoded semantic tokens and the corresponding text into the language model as an example. 3. Given a new piece of text, let the model generate the corresponding semantic tokens. 4. Input the generated semantic tokens into VITS / VQGAN to decode and generate the corresponding voice. ## Command Line Inference Download the required `vqgan` and `llama` models from our Hugging Face repository. ```bash huggingface-cli download fishaudio/fish-speech-1.2-sft --local-dir checkpoints/fish-speech-1.2-sft ``` ### 1. Generate prompt from voice: !!! note If you plan to let the model randomly choose a voice timbre, you can skip this step. ```bash python tools/vqgan/inference.py \ -i "paimon.wav" \ --checkpoint-path "checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth" ``` You should get a `fake.npy` file. ### 2. Generate semantic tokens from text: ```bash python tools/llama/generate.py \ --text "The text you want to convert" \ --prompt-text "Your reference text" \ --prompt-tokens "fake.npy" \ --checkpoint-path "checkpoints/fish-speech-1.2-sft" \ --num-samples 2 \ --compile ``` This command will create a `codes_N` file in the working directory, where N is an integer starting from 0. !!! note You may want to use `--compile` to fuse CUDA kernels for faster inference (~30 tokens/second -> ~500 tokens/second). Correspondingly, if you do not plan to use acceleration, you can comment out the `--compile` parameter. !!! info For GPUs that do not support bf16, you may need to use the `--half` parameter. ### 3. Generate vocals from semantic tokens: #### VQGAN Decoder ```bash python tools/vqgan/inference.py \ -i "codes_0.npy" \ --checkpoint-path "checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth" ``` ## HTTP API Inference We provide a HTTP API for inference. You can use the following command to start the server: ```bash python -m tools.api \ --listen 0.0.0.0:8080 \ --llama-checkpoint-path "checkpoints/fish-speech-1.2-sft" \ --decoder-checkpoint-path "checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth" \ --decoder-config-name firefly_gan_vq ``` If you want to speed up inference, you can add the --compile parameter. After that, you can view and test the API at http://127.0.0.1:8080/. Below is an example of sending a request using `tools/post_api.py`. ```bash python -m tools.post_api \ --text "Text to be input" \ --reference_audio "Path to reference audio" \ --reference_text "Text content of the reference audio" \ --streaming True ``` The above command indicates synthesizing the desired audio according to the reference audio information and returning it in a streaming manner. If you need to randomly select reference audio based on `{SPEAKER}` and `{EMOTION}`, configure it according to the following steps: ### 1. Create a `ref_data` folder in the root directory of the project. ### 2. Create a directory structure similar to the following within the `ref_data` folder. ``` . ├── SPEAKER1 │ ├──EMOTION1 │ │ ├── 21.15-26.44.lab │ │ ├── 21.15-26.44.wav │ │ ├── 27.51-29.98.lab │ │ ├── 27.51-29.98.wav │ │ ├── 30.1-32.71.lab │ │ └── 30.1-32.71.flac │ └──EMOTION2 │ ├── 30.1-32.71.lab │ └── 30.1-32.71.mp3 └── SPEAKER2 └─── EMOTION3 ├── 30.1-32.71.lab └── 30.1-32.71.mp3 ``` That is, first place `{SPEAKER}` folders in `ref_data`, then place `{EMOTION}` folders under each speaker, and place any number of `audio-text pairs` under each emotion folder. ### 3. Enter the following command in the virtual environment ```bash python tools/gen_ref.py ``` ### 4. Call the API. ```bash python -m tools.post_api \ --text "Text to be input" \ --speaker "${SPEAKER1}" \ --emotion "${EMOTION1}" \ --streaming True ``` The above example is for testing purposes only. ## WebUI Inference You can start the WebUI using the following command: ```bash python -m tools.webui \ --llama-checkpoint-path "checkpoints/fish-speech-1.2-sft" \ --decoder-checkpoint-path "checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth" \ --decoder-config-name firefly_gan_vq ``` !!! note You can use Gradio environment variables, such as `GRADIO_SHARE`, `GRADIO_SERVER_PORT`, `GRADIO_SERVER_NAME` to configure WebUI. Enjoy!